---
base_model: mistralai/Mixtral-8x7B-v0.1
inference: false
language:
- en
license: apache-2.0
model-index:
- name: Mixtral-8x7B
results: []
model_creator: mistralai
model_name: Mixtral-8x7B
model_type: mixtral
prompt_template: |
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
quantized_by: Inferless
tags:
- mixtral
- vllm
- GPTQ
---
Serverless GPUs to scale your machine learning inference without any hassle of managing servers, deploy complicated and custom models with ease.
Go through this tutorial, for quickly deploy Mixtral-8x7B-v0.1 using Inferless
# Mixtral-8x7B - GPTQ
- Model creator: [Mistralai](https://huggingface.co/mistralai)
- Original model: [Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)
## Description
This repo contains GPTQ model files for [Mistralai's Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1).
### About GPTQ
GPTQ is a method that compresses the model size and accelerates inference by quantizing weights based on a calibration dataset, aiming to minimize mean squared error in a single post-quantization step. GPTQ achieves both memory efficiency and faster inference.
It is supported by:
- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
## Shared files, and GPTQ parameters
Models are released as sharded safetensors files.
| Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
| ------ | ---- | -- | ----------- | ------- | ---- |
| [main](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 5.96 GB
## How to use
You will need the following software packages and python libraries:
```json
build:
cuda_version: "12.1.1"
system_packages:
- "libssl-dev"
python_packages:
- "torch==2.1.2"
- "vllm==0.2.6"
- "transformers==4.36.2"
- "accelerate==0.25.0"
```