File size: 6,110 Bytes
9392010
 
5660c1c
 
 
 
 
 
 
 
 
 
 
9392010
5660c1c
 
 
 
 
 
 
 
 
 
 
 
9392010
5660c1c
9392010
5660c1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9392010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5660c1c
 
9392010
 
5660c1c
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import warnings
from typing import Optional, Tuple
from transformers.models.llama.modeling_llama import (
    LlamaConfig, 
    LlamaModel,
    LlamaForCausalLM,
    LlamaAttention,
    LlamaFlashAttention2,
    LlamaSdpaAttention,
    LlamaMLP,
    LlamaDecoderLayer,
)
from mybitnet.bitnet import BitLinear
import torch
from torch import nn

class BitLlamaConfig(LlamaConfig):
    model_type = "bit_llama"

    def __init__(self, bits=8, **kwargs):
        super().__init__(**kwargs)
        self.bits = bits

class BitLlamaMLP(LlamaMLP):
    def __init__(self, config):
        super().__init__(config)
        self.gate_proj = BitLinear(self.hidden_size, self.intermediate_size, bias=False, bits=config.bits, flg_before_linear=False)
        self.up_proj = BitLinear(self.hidden_size, self.intermediate_size, bias=False, bits=config.bits, flg_before_linear=True)
        self.down_proj = BitLinear(self.intermediate_size, self.hidden_size, bias=False, bits=config.bits, flg_before_linear=True)
        
class BitLlamaAttention(LlamaAttention):
    def __init__(self, config: BitLlamaConfig, layer_idx: Optional[int] = None):
        super().__init__(config)
        self.q_proj = BitLinear(self.hidden_size, self.num_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
        self.k_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
        self.v_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
        self.o_proj = BitLinear(self.hidden_size, self.hidden_size, bias=False, bits=config.bits, flg_before_linear=True)

class BitLlamaFlashAttention2(LlamaFlashAttention2):
    def __init__(self, config: BitLlamaConfig, layer_idx: Optional[int] = None):
        super().__init__(config, layer_idx)
        self.q_proj = BitLinear(self.hidden_size, self.num_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
        self.k_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
        self.v_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
        self.o_proj = BitLinear(self.hidden_size, self.hidden_size, bias=False, bits=config.bits, flg_before_linear=True)

class BitLlamaSdpaAttention(LlamaSdpaAttention):
    def __init__(self, config: BitLlamaConfig, layer_idx: Optional[int] = None):
        super().__init__(config, layer_idx)
        self.q_proj = BitLinear(self.hidden_size, self.num_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
        self.k_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
        self.v_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, bits=config.bits, flg_before_linear=True)
        self.o_proj = BitLinear(self.hidden_size, self.hidden_size, bias=False, bits=config.bits, flg_before_linear=True)

BITLLAMA_ATTENTION_CLASSES = {
    "eager": BitLlamaAttention,
    "flash_attention_2": BitLlamaFlashAttention2,
    "sdpa": BitLlamaSdpaAttention,
}

class BitLlamaDecoderLayer(LlamaDecoderLayer):
    def __init__(self, config: BitLlamaConfig, layer_idx: int):
        super().__init__(config, layer_idx)
        self.self_attn = BITLLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
        self.mlp = BitLlamaMLP(config)
        del self.input_layernorm
        del self.post_attention_layernorm

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        refers: https://github.com/huggingface/transformers/blob/c5f0288bc7d76f65996586f79f69fba8867a0e67/src/transformers/models/llama/modeling_llama.py#L693
        """
        if "padding_mask" in kwargs:
            warnings.warn(
                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
            )

        residual = hidden_states

        # Self Attention
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            cache_position=cache_position,
            **kwargs,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs

class BitLlamaModel(LlamaModel):
    config_class = BitLlamaConfig

    def __init__(self, config: BitLlamaConfig):
        super().__init__(config)
        self.layers = nn.ModuleList(
            [BitLlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )

class BitLlamaForCausalLM(LlamaForCausalLM):
    config_class = BitLlamaConfig

    def __init__(self, config: BitLlamaConfig):
        super().__init__(config)
        self.model = BitLlamaModel(config)
        self.lm_head = BitLinear(config.hidden_size, config.vocab_size, bias=False, bits=config.bits, flg_before_linear=True)