--- license: apache-2.0 datasets: - AyoubChLin/CNN_News_Articles_2011-2022 language: - en metrics: - accuracy pipeline_tag: text-classification tags: - news classification --- # Fine-Tuned BART Model for Text Classification on CNN News Articles This is a fine-tuned BART (Bidirectional and Auto-Regressive Transformers) model for text classification on CNN news articles. The model was fine-tuned on a dataset of CNN news articles with labels indicating the article topic, using a batch size of 32, learning rate of 6e-5, and trained for one epoch. ## How to Use ### Install ```bash pip install transformers ``` ### Example Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("IT-community/Bart_News_text_classification") model = AutoModelForSequenceClassification.from_pretrained("IT-community/Bart_News_text_classification") # Tokenize input text text = "This is an example CNN news article about politics." inputs = tokenizer(text, padding=True, truncation=True, max_length=512, return_tensors="pt") # Make prediction outputs = model(inputs["input_ids"], attention_mask=inputs["attention_mask"]) predicted_label = torch.argmax(outputs.logits) print(predicted_label) ``` ## Evaluation The model achieved the following performance metrics on the test set: Accuracy: 0.9591836734693877 F1-score: 0.958301875401112 Recall: 0.9591836734693877 Precision: 0.9579673040369542 ## Contact This work was done by the IT-community club.