wanng commited on
Commit
3efbe04
1 Parent(s): e989251

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -10
README.md CHANGED
@@ -10,19 +10,30 @@ widget:
10
 
11
 
12
  ---
13
- # Randeng-BART-759M-Chinese-BertTokenizer model (Chinese),one model of [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM)
14
 
15
- The 759M million parameter Randeng-BART large model, using 180G Chinese data, 8 A100(40G) training for 7 days,which is a Encoder-Only transformer structure.
 
16
 
17
- We use bert vocab as our tokenizer.
18
 
19
- ## Task Description
20
 
21
- Randeng-BART-759M-Chinese-BertTokenizer is pre-trained by Text-Infilling task from BART [paper](https://readpaper.com/pdf-annotate/note?noteId=675945911766249472&pdfId=550970997159968917)
22
 
23
- You can find our pretrain's code in [Fengshengbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen/examples/pretrain_randeng_bart)
24
 
25
- ## Usage
 
 
 
 
 
 
 
 
 
 
26
 
27
  ```python
28
  from transformers import BartForConditionalGeneration, AutoTokenizer, Text2TextGenerationPipeline
@@ -35,15 +46,31 @@ text2text_generator = Text2TextGenerationPipeline(model, tokenizer)
35
  print(text2text_generator(text, max_length=50, do_sample=False))
36
  ```
37
 
38
- ## Citation
 
 
39
 
40
- If you find the resource is useful, please cite the following website in your paper.
41
 
 
 
 
 
 
 
 
 
42
  ```
 
 
 
 
 
 
43
  @misc{Fengshenbang-LM,
44
  title={Fengshenbang-LM},
45
  author={IDEA-CCNL},
46
- year={2022},
47
  howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
48
  }
49
  ```
 
10
 
11
 
12
  ---
13
+ # Randeng-BART-759M-Chinese-BertTokenizer
14
 
15
+ - Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM)
16
+ - Docs: [Fengshenbang-Docs](https://fengshenbang-doc.readthedocs.io/)
17
 
18
+ ## 简介 Brief Introduction
19
 
20
+ 善于处理NLT任务,使用BERT分词器,大规模的中文版的BART。
21
 
22
+ Good at solving NLT tasks, applying the BERT tokenizer, a large-scale Chinese BART.
23
 
24
+ ## 模型分类 Model Taxonomy
25
 
26
+ | 需求 Demand | 任务 Task | 系列 Series | 模型 Model | 参数 Parameter | 额外 Extra |
27
+ | :----: | :----: | :----: | :----: | :----: | :----: |
28
+ | 通用 General | 自然语言转换 NLT | 燃灯 Randeng | BART | 139M | - |
29
+
30
+ ## 模型信息 Model Information
31
+
32
+ 为了得到一个大规模的中文版的BART(约BART-large的两倍),我们用悟道语料库(180G版本)进行预训练。具体地,我们在预训练阶段中使用了[封神框架](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen)大概花费了8张A100约7天。值得注意的是,因为BERT分词器通常在中文任务中表现比其他分词器好,所以我们使用了它。我们也开放了我们预训练的代码:[pretrain_randeng_bart](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen/examples/pretrain_randeng_bart)。
33
+
34
+ To obtain a large-scale Chinese BART (around twice as large as BART-large), we use WuDao Corpora (180 GB version) for pre-training. Specifically, we use the [fengshen framework](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen) in the pre-training phase which cost about 7 days with 8 A100 GPUs. Note that since the BERT tokenizer usually performs better than others for Chinese tasks, we employ it. We have also released our pre-training code: [pretrain_randeng_bart](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen/examples/pretrain_randeng_bart).
35
+
36
+ ## 使用 Usage
37
 
38
  ```python
39
  from transformers import BartForConditionalGeneration, AutoTokenizer, Text2TextGenerationPipeline
 
46
  print(text2text_generator(text, max_length=50, do_sample=False))
47
  ```
48
 
49
+ ## 引用 Citation
50
+
51
+ 如果您在您的工作中使用了我们的模型,可以引用我们的[论文](https://arxiv.org/abs/2209.02970):
52
 
53
+ If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2209.02970):
54
 
55
+ ```text
56
+ @article{fengshenbang,
57
+ author = {Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen and Ruyi Gan and Jiaxing Zhang},
58
+ title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence},
59
+ journal = {CoRR},
60
+ volume = {abs/2209.02970},
61
+ year = {2022}
62
+ }
63
  ```
64
+
65
+ 也可以引用我们的[网站](https://github.com/IDEA-CCNL/Fengshenbang-LM/):
66
+
67
+ You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/):
68
+
69
+ ```text
70
  @misc{Fengshenbang-LM,
71
  title={Fengshenbang-LM},
72
  author={IDEA-CCNL},
73
+ year={2021},
74
  howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
75
  }
76
  ```