File size: 1,715 Bytes
5ae47df
 
8771706
 
5ae47df
8771706
5ae47df
 
8771706
5ae47df
 
8771706
5ae47df
8771706
 
5ae47df
8771706
5ae47df
8771706
 
5ae47df
8771706
 
 
 
 
5ae47df
511ff7b
 
d864d82
8771706
 
5ae47df
8771706
5ae47df
8771706
d864d82
8771706
 
 
5ae47df
8771706
5ae47df
 
511ff7b
8771706
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
base_model: google/gemma-2-2b-it
library_name: transformers
model_name: Gemma-2-2b-it-ag
tags:
- generated_from_trainer
- trl
- sft
licence: license
---

# Model Card for Gemma-2-2b-it-ag

This model is a fine-tuned version of [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it).
It has been trained using [TRL](https://github.com/huggingface/trl).

## Quick start

```python
from transformers import pipeline

question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="HugoVoxx/Gemma-2-2b-it-ag", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```

## Training procedure

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/hugovoxx-fpt-university/Fine-tune%20Gemma-2-2b-it%20on%20AlphaGeometry%20Dataset/runs/8lpwdqxj)

This model was trained with SFT.

### Framework versions

- TRL: 0.12.0
- Transformers: 4.46.2
- Pytorch: 2.4.0
- Datasets: 3.1.0
- Tokenizers: 0.20.0

## Citations



Cite TRL as:
    
```bibtex
@misc{vonwerra2022trl,
	title        = {{TRL: Transformer Reinforcement Learning}},
	author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
	year         = 2020,
	journal      = {GitHub repository},
	publisher    = {GitHub},
	howpublished = {\url{https://github.com/huggingface/trl}}
}
```