siglip-so400m-14-384-flash-attn2-navit / tokenization_siglip.py
HugoLaurencon's picture
first commit
9da5852
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization class for SigLIP model."""
import os
import re
import string
import warnings
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from transformers.convert_slow_tokenizer import import_protobuf
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.tokenization_utils_base import AddedToken
if TYPE_CHECKING:
from transformers.tokenization_utils_base import TextInput
from transformers.utils import logging, requires_backends
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"google/siglip-base-patch16-224": "https://huggingface.co/google/siglip-base-patch16-224/resolve/main/spiece.model",
}
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"google/siglip-base-patch16-224": 256,
}
SPIECE_UNDERLINE = "▁"
class SiglipTokenizer(PreTrainedTokenizer):
"""
Construct a Siglip tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"</s>"`):
The token used for padding, for example when batching sequences of different lengths.
additional_special_tokens (`List[str]`, *optional*):
Additional special tokens used by the tokenizer.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
model_max_length (`int`, *optional*, defaults to 64):
The maximum length (in number of tokens) for model inputs.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
eos_token="</s>",
unk_token="<unk>",
pad_token="</s>",
additional_special_tokens=None,
sp_model_kwargs: Optional[Dict[str, Any]] = None,
model_max_length=64,
do_lower_case=True,
**kwargs,
) -> None:
requires_backends(self, "protobuf")
pad_token = (
AddedToken(pad_token, rstrip=True, lstrip=True, normalized=False, special=True)
if isinstance(pad_token, str)
else pad_token
)
unk_token = (
AddedToken(unk_token, rstrip=True, lstrip=True, normalized=False, special=True)
if isinstance(unk_token, str)
else unk_token
)
eos_token = (
AddedToken(eos_token, rstrip=True, lstrip=True, normalized=False, special=True)
if isinstance(eos_token, str)
else eos_token
)
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
self.do_lower_case = do_lower_case
self.vocab_file = vocab_file
self.sp_model = self.get_spm_processor()
self.vocab_file = vocab_file
super().__init__(
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
additional_special_tokens=additional_special_tokens,
sp_model_kwargs=self.sp_model_kwargs,
model_max_length=model_max_length,
do_lower_case=do_lower_case,
**kwargs,
)
def get_spm_processor(self):
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
with open(self.vocab_file, "rb") as f:
sp_model = f.read()
model_pb2 = import_protobuf()
model = model_pb2.ModelProto.FromString(sp_model)
normalizer_spec = model_pb2.NormalizerSpec()
normalizer_spec.add_dummy_prefix = False
model.normalizer_spec.MergeFrom(normalizer_spec)
sp_model = model.SerializeToString()
tokenizer.LoadFromSerializedProto(sp_model)
return tokenizer
@property
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.vocab_size
def vocab_size(self):
return self.sp_model.get_piece_size()
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_vocab
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_special_tokens_mask
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
# normal case: some special tokens
if token_ids_1 is None:
return ([0] * len(token_ids_0)) + [1]
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._add_eos_if_not_present
def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]:
"""Do not add eos again if user already added it."""
if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated"
" eos tokens being added."
)
return token_ids
else:
return token_ids + [self.eos_token_id]
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.create_token_type_ids_from_sequences
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
eos = [self.eos_token_id]
if token_ids_1 is None:
return len(token_ids_0 + eos) * [0]
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A sequence has the following format:
- single sequence: `X </s>`
- pair of sequences: `A </s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
token_ids_0 = self._add_eos_if_not_present(token_ids_0)
if token_ids_1 is None:
return token_ids_0
else:
token_ids_1 = self._add_eos_if_not_present(token_ids_1)
return token_ids_0 + token_ids_1
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__getstate__
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__setstate__
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def remove_punctuation(self, text: str) -> str:
return text.translate(str.maketrans("", "", string.punctuation))
# source: https://github.com/google-research/big_vision/blob/3b8e5ab6ad4f96e32b32826f9e1b8fd277914f9c/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94
def canonicalize_text(self, text, *, keep_punctuation_exact_string=None):
"""Returns canonicalized `text` (puncuation removed).
Args:
text (`str`):
String to be canonicalized.
keep_punctuation_exact_string (`str`, *optional*):
If provided, then this exact string is kept. For example providing '{}' will keep any occurrences of '{}'
(but will still remove '{' and '}' that appear separately).
"""
if keep_punctuation_exact_string:
text = keep_punctuation_exact_string.join(
self.remove_punctuation(part) for part in text.split(keep_punctuation_exact_string)
)
else:
text = self.remove_punctuation(text)
text = re.sub(r"\s+", " ", text)
text = text.strip()
return text
def tokenize(self, text: "TextInput", add_special_tokens=False, **kwargs) -> List[str]:
"""
Converts a string to a list of tokens.
"""
tokens = super().tokenize(SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " "), **kwargs)
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens:
tokens = tokens[1:]
return tokens
@property
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.unk_token_length
def unk_token_length(self):
return len(self.sp_model.encode(str(self.unk_token)))
def _tokenize(self, text, **kwargs):
"""
Returns a tokenized string.
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
SPIECE_UNDERLINE.
For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give `['H', 'e', 'y']` instead of `['▁He', 'y']`.
Thus we always encode `f"{unk_token}text"` and strip the `unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`.
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`.
"""
text = self.canonicalize_text(text, keep_punctuation_exact_string=None)
tokens = self.sp_model.encode(text, out_type=str)
# 1. Encode string + prefix ex: "<unk> Hey"
tokens = self.sp_model.encode(self.unk_token + text, out_type=str)
# 2. Remove self.unk_token from ['<','unk','>', '▁Hey']
return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_token_to_id
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.piece_to_id(token)
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_id_to_token
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
token = self.sp_model.IdToPiece(index)
return token
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.convert_tokens_to_string
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
current_sub_tokens = []
# since we manually add the prefix space, we have to remove it
tokens[0] = tokens[0].lstrip(SPIECE_UNDERLINE)
out_string = ""
prev_is_special = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(current_sub_tokens) + token
prev_is_special = True
current_sub_tokens = []
else:
current_sub_tokens.append(token)
prev_is_special = False
out_string += self.sp_model.decode(current_sub_tokens)
return out_string.strip()
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)