VictorSanh commited on
Commit
b1b2476
1 Parent(s): 7515eca

big renaming

Browse files
README.md CHANGED
@@ -19,6 +19,74 @@ It is based on a very early checkpoint of our forthcoming vision-language founda
19
 
20
  This is very much an alpha version. The goal is to kick off an effort to develop improved models capable of converting a website screenshot into actual code.
21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  # Model Details
23
 
24
  - **Developed by:** Hugging Face
 
19
 
20
  This is very much an alpha version. The goal is to kick off an effort to develop improved models capable of converting a website screenshot into actual code.
21
 
22
+ # Code snippet
23
+
24
+ ```python
25
+ import torch
26
+
27
+ from PIL import Image
28
+ from transformers import AutoModelForCausalLM, AutoProcessor
29
+
30
+ from transformers.image_utils import to_numpy_array, PILImageResampling, ChannelDimension
31
+ from transformers.image_transforms import resize, to_channel_dimension_format
32
+
33
+ DEVICE = torch.device("cuda")
34
+ PROCESSOR = AutoProcessor.from_pretrained(
35
+ "HuggingFaceM4/VLM_WebSight_finetuned",
36
+ token=API_TOKEN,
37
+ )
38
+ MODEL = AutoModelForCausalLM.from_pretrained(
39
+ "HuggingFaceM4/VLM_WebSight_finetuned",
40
+ token=API_TOKEN,
41
+ trust_remote_code=True,
42
+ torch_dtype=torch.bfloat16,
43
+ ).to(DEVICE)
44
+ image_seq_len = MODEL.config.perceiver_config.resampler_n_latents
45
+ BOS_TOKEN = PROCESSOR.tokenizer.bos_token
46
+ BAD_WORDS_IDS = PROCESSOR.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
47
+
48
+
49
+ def convert_to_rgb(image):
50
+ # `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
51
+ # for transparent images. The call to `alpha_composite` handles this case
52
+ if image.mode == "RGB":
53
+ return image
54
+
55
+ image_rgba = image.convert("RGBA")
56
+ background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
57
+ alpha_composite = Image.alpha_composite(background, image_rgba)
58
+ alpha_composite = alpha_composite.convert("RGB")
59
+ return alpha_composite
60
+
61
+ # The processor is the same as the Idefics processor except for the BILINEAR interpolation,
62
+ # so this is a hack in order to redefine ONLY the transform method
63
+ def custom_transform(x):
64
+ x = convert_to_rgb(x)
65
+ x = to_numpy_array(x)
66
+ x = resize(x, (960, 960), resample=PILImageResampling.BILINEAR)
67
+ x = PROCESSOR.image_processor.rescale(x, scale=1 / 255)
68
+ x = PROCESSOR.image_processor.normalize(
69
+ x,
70
+ mean=PROCESSOR.image_processor.image_mean,
71
+ std=PROCESSOR.image_processor.image_std
72
+ )
73
+ x = to_channel_dimension_format(x, ChannelDimension.FIRST)
74
+ x = torch.tensor(x)
75
+ return x
76
+
77
+ inputs = PROCESSOR.tokenizer(
78
+ f"{BOS_TOKEN}<fake_token_around_image>{'<image>' * image_seq_len}<fake_token_around_image>",
79
+ return_tensors="pt",
80
+ add_special_tokens=False,
81
+ )
82
+ inputs["pixel_values"] = PROCESSOR.image_processor([image], transform=custom_transform)
83
+ inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
84
+ generated_ids = MODEL.generate(**inputs, bad_words_ids=BAD_WORDS_IDS, max_length=4096)
85
+ generated_text = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True)[0]
86
+
87
+ print(generated_text)
88
+ ```
89
+
90
  # Model Details
91
 
92
  - **Developed by:** Hugging Face
config.json CHANGED
@@ -6,12 +6,12 @@
6
  "alpha_type": "float",
7
  "alphas_initializer_range": 0.0,
8
  "architectures": [
9
- "Img2HTMLForVisionText2Text"
10
  ],
11
  "attention_dropout": 0.0,
12
  "auto_map": {
13
- "AutoConfig": "configuration_img2html.Img2HTMLConfig",
14
- "AutoModelForCausalLM": "modeling_img2html.Img2HTMLForVisionText2Text"
15
  },
16
  "bos_token_id": 1,
17
  "cross_layer_interval": 1,
@@ -27,7 +27,7 @@
27
  "initializer_range": 0.02,
28
  "intermediate_size": 14336,
29
  "max_position_embeddings": 32768,
30
- "model_type": "img2html",
31
  "num_attention_heads": 32,
32
  "num_hidden_layers": 32,
33
  "num_key_value_heads": 8,
@@ -52,7 +52,7 @@
52
  "hidden_size": 1152,
53
  "image_size": 960,
54
  "intermediate_size": 4304,
55
- "model_type": "img2html",
56
  "num_attention_heads": 16,
57
  "num_hidden_layers": 27,
58
  "patch_size": 14
 
6
  "alpha_type": "float",
7
  "alphas_initializer_range": 0.0,
8
  "architectures": [
9
+ "VMistralForVisionText2Text"
10
  ],
11
  "attention_dropout": 0.0,
12
  "auto_map": {
13
+ "AutoConfig": "configuration_vmistral.VMistralConfig",
14
+ "AutoModelForCausalLM": "modeling_vmistral.VMistralForVisionText2Text"
15
  },
16
  "bos_token_id": 1,
17
  "cross_layer_interval": 1,
 
27
  "initializer_range": 0.02,
28
  "intermediate_size": 14336,
29
  "max_position_embeddings": 32768,
30
+ "model_type": "vmistral",
31
  "num_attention_heads": 32,
32
  "num_hidden_layers": 32,
33
  "num_key_value_heads": 8,
 
52
  "hidden_size": 1152,
53
  "image_size": 960,
54
  "intermediate_size": 4304,
55
+ "model_type": "vmistral",
56
  "num_attention_heads": 16,
57
  "num_hidden_layers": 27,
58
  "patch_size": 14
configuration_img2html.py → configuration_vmistral.py RENAMED
@@ -12,7 +12,7 @@
12
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
  # See the License for the specific language governing permissions and
14
  # limitations under the License.
15
- """ Img2HTML model configuration"""
16
  from transformers.configuration_utils import PretrainedConfig
17
  from transformers.utils import logging
18
 
@@ -20,14 +20,14 @@ from transformers.utils import logging
20
  logger = logging.get_logger(__name__)
21
 
22
  MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
23
- "HuggingFaceM4/Img2HTML": "https://huggingface.co/HuggingFaceM4/Img2HTML/resolve/main/config.json",
24
  }
25
 
26
 
27
- class Img2HTMLVisionConfig(PretrainedConfig):
28
  r"""
29
  """
30
- model_type = "img2html"
31
 
32
  def __init__(
33
  self,
@@ -63,7 +63,7 @@ class Img2HTMLVisionConfig(PretrainedConfig):
63
  self._flash_attn_2_enabled = _flash_attn_2_enabled
64
 
65
 
66
- class Img2HTMLPerceiverConfig(PretrainedConfig):
67
  r"""
68
  TThis is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
69
  Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
@@ -89,7 +89,7 @@ class Img2HTMLPerceiverConfig(PretrainedConfig):
89
  qk_layer_norms_perceiver (`bool`, *optional*, defaults to `False`):
90
  Whether or not to use qk layer norms in perceiver
91
  """
92
- model_type = "img2html"
93
 
94
  def __init__(
95
  self,
@@ -109,7 +109,7 @@ class Img2HTMLPerceiverConfig(PretrainedConfig):
109
  super().__init__(**kwargs)
110
 
111
 
112
- class Img2HTMLConfig(PretrainedConfig):
113
  r"""
114
  This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
115
  Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
@@ -201,7 +201,7 @@ class Img2HTMLConfig(PretrainedConfig):
201
  >>> # Accessing the model configuration
202
  >>> configuration = model.config
203
  ```"""
204
- model_type = "img2html"
205
  is_composition = False
206
 
207
  def __init__(
@@ -280,17 +280,17 @@ class Img2HTMLConfig(PretrainedConfig):
280
  self.attention_dropout = attention_dropout
281
 
282
  if perceiver_config is None:
283
- self.perceiver_config = Img2HTMLPerceiverConfig()
284
  elif isinstance(perceiver_config, dict):
285
- self.perceiver_config = Img2HTMLPerceiverConfig(**perceiver_config)
286
- elif isinstance(perceiver_config, Img2HTMLPerceiverConfig):
287
  self.perceiver_config = perceiver_config
288
 
289
  if vision_config is None:
290
- self.vision_config = Img2HTMLVisionConfig()
291
  elif isinstance(vision_config, dict):
292
- self.vision_config = Img2HTMLVisionConfig(**vision_config)
293
- elif isinstance(vision_config, Img2HTMLVisionConfig):
294
  self.vision_config = vision_config
295
 
296
  super().__init__(
 
12
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
  # See the License for the specific language governing permissions and
14
  # limitations under the License.
15
+ """ VMistral model configuration"""
16
  from transformers.configuration_utils import PretrainedConfig
17
  from transformers.utils import logging
18
 
 
20
  logger = logging.get_logger(__name__)
21
 
22
  MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
23
+ "HuggingFaceM4/VLM_WebSight_finetuned": "https://huggingface.co/HuggingFaceM4/VLM_WebSight_finetuned/resolve/main/config.json",
24
  }
25
 
26
 
27
+ class VMistralVisionConfig(PretrainedConfig):
28
  r"""
29
  """
30
+ model_type = "vmistral"
31
 
32
  def __init__(
33
  self,
 
63
  self._flash_attn_2_enabled = _flash_attn_2_enabled
64
 
65
 
66
+ class VMistralPerceiverConfig(PretrainedConfig):
67
  r"""
68
  TThis is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
69
  Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
 
89
  qk_layer_norms_perceiver (`bool`, *optional*, defaults to `False`):
90
  Whether or not to use qk layer norms in perceiver
91
  """
92
+ model_type = "vmistral"
93
 
94
  def __init__(
95
  self,
 
109
  super().__init__(**kwargs)
110
 
111
 
112
+ class VMistralConfig(PretrainedConfig):
113
  r"""
114
  This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
115
  Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
 
201
  >>> # Accessing the model configuration
202
  >>> configuration = model.config
203
  ```"""
204
+ model_type = "vmistral"
205
  is_composition = False
206
 
207
  def __init__(
 
280
  self.attention_dropout = attention_dropout
281
 
282
  if perceiver_config is None:
283
+ self.perceiver_config = VMistralPerceiverConfig()
284
  elif isinstance(perceiver_config, dict):
285
+ self.perceiver_config = VMistralPerceiverConfig(**perceiver_config)
286
+ elif isinstance(perceiver_config, VMistralPerceiverConfig):
287
  self.perceiver_config = perceiver_config
288
 
289
  if vision_config is None:
290
+ self.vision_config = VMistralVisionConfig()
291
  elif isinstance(vision_config, dict):
292
+ self.vision_config = VMistralVisionConfig(**vision_config)
293
+ elif isinstance(vision_config, VMistralVisionConfig):
294
  self.vision_config = vision_config
295
 
296
  super().__init__(
image_processing_idefics.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Image processor class for Idefics."""
16
+
17
+ from typing import Callable, Dict, List, Optional, Union
18
+
19
+ from PIL import Image
20
+
21
+ from ...image_processing_utils import BaseImageProcessor, BatchFeature
22
+ from ...image_transforms import resize, to_channel_dimension_format
23
+ from ...image_utils import (
24
+ ChannelDimension,
25
+ ImageInput,
26
+ PILImageResampling,
27
+ make_list_of_images,
28
+ to_numpy_array,
29
+ valid_images,
30
+ )
31
+ from ...utils import TensorType, is_torch_available
32
+
33
+
34
+ IDEFICS_STANDARD_MEAN = [0.48145466, 0.4578275, 0.40821073]
35
+ IDEFICS_STANDARD_STD = [0.26862954, 0.26130258, 0.27577711]
36
+
37
+
38
+ def convert_to_rgb(image):
39
+ # `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
40
+ # for transparent images. The call to `alpha_composite` handles this case
41
+ if image.mode == "RGB":
42
+ return image
43
+
44
+ image_rgba = image.convert("RGBA")
45
+ background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
46
+ alpha_composite = Image.alpha_composite(background, image_rgba)
47
+ alpha_composite = alpha_composite.convert("RGB")
48
+ return alpha_composite
49
+
50
+
51
+ class IdeficsImageProcessor(BaseImageProcessor):
52
+ r"""
53
+ Constructs a Idefics image processor.
54
+
55
+ Args:
56
+ image_size (`int`, *optional*, defaults to 224):
57
+ Resize to image size
58
+ image_mean (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_MEAN`):
59
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
60
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be
61
+ overridden by the `image_mean` parameter in the `preprocess` method.
62
+ image_std (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_STD`):
63
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
64
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
65
+ Can be overridden by the `image_std` parameter in the `preprocess` method.
66
+ image_num_channels (`int`, *optional*, defaults to 3):
67
+ Number of image channels.
68
+ """
69
+
70
+ model_input_names = ["pixel_values"]
71
+
72
+ def __init__(
73
+ self,
74
+ image_size: int = 224,
75
+ image_mean: Optional[Union[float, List[float]]] = None,
76
+ image_std: Optional[Union[float, List[float]]] = None,
77
+ image_num_channels: Optional[int] = 3,
78
+ **kwargs,
79
+ ) -> None:
80
+ super().__init__(**kwargs)
81
+
82
+ self.image_size = image_size
83
+ self.image_num_channels = image_num_channels
84
+ self.image_mean = image_mean
85
+ self.image_std = image_std
86
+
87
+ def preprocess(
88
+ self,
89
+ images: ImageInput,
90
+ image_num_channels: Optional[int] = 3,
91
+ image_size: Optional[Dict[str, int]] = None,
92
+ image_mean: Optional[Union[float, List[float]]] = None,
93
+ image_std: Optional[Union[float, List[float]]] = None,
94
+ transform: Callable = None,
95
+ **kwargs,
96
+ ) -> TensorType.PYTORCH:
97
+ """
98
+ Preprocess a batch of images.
99
+
100
+ Args:
101
+ images (`ImageInput`):
102
+ A list of images to preprocess.
103
+ image_size (`int`, *optional*, defaults to `self.image_size`):
104
+ Resize to image size
105
+ image_num_channels (`int`, *optional*, defaults to `self.image_num_channels`):
106
+ Number of image channels.
107
+ image_mean (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_MEAN`):
108
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
109
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can
110
+ be overridden by the `image_mean` parameter in the `preprocess` method.
111
+ image_std (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_STD`):
112
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
113
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess`
114
+ method. Can be overridden by the `image_std` parameter in the `preprocess` method.
115
+ transform (`Callable`, *optional*, defaults to `None`):
116
+ A custom transform function that accepts a single image can be passed for training. For example,
117
+ `torchvision.Compose` can be used to compose multiple transforms. If `None` - an inference mode is
118
+ assumed - and then a preset of inference-specific transforms will be applied to the images
119
+
120
+ Returns:
121
+ a PyTorch tensor of the processed images
122
+
123
+ """
124
+ image_size = image_size if image_size is not None else self.image_size
125
+ image_num_channels = image_num_channels if image_num_channels is not None else self.image_num_channels
126
+ image_mean = image_mean if image_mean is not None else self.image_mean
127
+ image_std = image_std if image_std is not None else self.image_std
128
+ size = (image_size, image_size)
129
+
130
+ if isinstance(images, list) and len(images) == 0:
131
+ return []
132
+
133
+ images = make_list_of_images(images)
134
+
135
+ if not valid_images(images):
136
+ raise ValueError(
137
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
138
+ "torch.Tensor, tf.Tensor or jax.ndarray."
139
+ )
140
+
141
+ # For training a user needs to pass their own set of transforms as a Callable.
142
+ # For reference this is what was used in the original IDEFICS training:
143
+ # transform = transforms.Compose([
144
+ # convert_to_rgb,
145
+ # transforms.RandomResizedCrop((size, size), scale=(0.9, 1.0), interpolation=transforms.InterpolationMode.BICUBIC),
146
+ # transforms.ToTensor(),
147
+ # transforms.Normalize(mean=image_mean, std=image_std),
148
+ # ])
149
+ if transform is not None:
150
+ if not is_torch_available():
151
+ raise ImportError("To pass in `transform` torch must be installed")
152
+ import torch
153
+
154
+ images = [transform(x) for x in images]
155
+ return torch.stack(images)
156
+
157
+ # for inference we do the exact transforms that were used to train IDEFICS
158
+ images = [convert_to_rgb(x) for x in images]
159
+ # further transforms expect numpy arrays
160
+ images = [to_numpy_array(x) for x in images]
161
+ images = [resize(x, size, resample=PILImageResampling.BICUBIC) for x in images]
162
+ images = [self.rescale(image=image, scale=1 / 255) for image in images]
163
+ images = [self.normalize(x, mean=image_mean, std=image_std) for x in images]
164
+ images = [to_channel_dimension_format(x, ChannelDimension.FIRST) for x in images]
165
+ # TODO: this converts to torch tensors - switch to convert_to_tensors once it becomes available
166
+ images = BatchFeature(data={"pixel_values": images}, tensor_type=TensorType.PYTORCH)["pixel_values"]
167
+
168
+ return images
modeling_img2html.py → modeling_vmistral.py RENAMED
@@ -17,7 +17,7 @@
17
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
  # See the License for the specific language governing permissions and
19
  # limitations under the License.
20
- """ PyTorch Mistral model."""
21
  from dataclasses import dataclass
22
  import inspect
23
  import math
@@ -43,7 +43,7 @@ from transformers import PreTrainedModel
43
  from transformers.utils import logging
44
  from transformers.modeling_outputs import ModelOutput
45
 
46
- from .configuration_img2html import Img2HTMLConfig
47
  from .vision import SiglipVisionModel
48
 
49
 
@@ -55,16 +55,16 @@ if is_flash_attn_2_available():
55
 
56
  logger = logging.get_logger(__name__)
57
 
58
- _CONFIG_FOR_DOC = "Img2HTMLConfig"
59
 
60
- IMG2HTML_PRETRAINED_MODEL_ARCHIVE_LIST = [
61
- "HuggingFaceM4/Img2HTML"
62
  ]
63
 
64
  @dataclass
65
- class Img2HTMLBaseModelOutputWithPast(ModelOutput):
66
  """
67
- Base class for Img2HTML model's outputs that may also contain a past key/values (to speed up sequential decoding).
68
 
69
  Args:
70
  last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
@@ -107,9 +107,9 @@ class Img2HTMLBaseModelOutputWithPast(ModelOutput):
107
 
108
 
109
  @dataclass
110
- class Img2HTMLCausalLMOutputWithPast(ModelOutput):
111
  """
112
- Base class for Img2HTML causal language model (or autoregressive) outputs.
113
 
114
  Args:
115
  loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
@@ -162,7 +162,6 @@ def expand_inputs_for_generation(
162
  input_ids = input_ids.index_select(0, expanded_return_idx)
163
  model_kwargs["pixel_values"] = model_kwargs.get("pixel_values", None)
164
  model_kwargs["image_hidden_states"] = model_kwargs.get("image_hidden_states", None)
165
- # model_kwargs["image_attention_mask"] = model_kwargs.get("image_attention_mask", None)
166
 
167
  if "token_type_ids" in model_kwargs:
168
  token_type_ids = model_kwargs["token_type_ids"]
@@ -171,11 +170,6 @@ def expand_inputs_for_generation(
171
  if attention_mask is not None:
172
  model_kwargs["attention_mask"] = attention_mask.index_select(0, expanded_return_idx)
173
 
174
- # if model_kwargs["image_attention_mask"] is not None:
175
- # model_kwargs["image_attention_mask"] = model_kwargs["image_attention_mask"].index_select(
176
- # 0, expanded_return_idx
177
- # )
178
-
179
  if model_kwargs["pixel_values"] is not None:
180
  model_kwargs["pixel_values"] = model_kwargs["pixel_values"].index_select(0, expanded_return_idx)
181
 
@@ -203,10 +197,6 @@ def update_model_kwargs_for_generation(outputs, model_kwargs):
203
  model_kwargs["attention_mask"] = torch.cat(
204
  [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
205
  )
206
- # if "image_attention_mask" in model_kwargs:
207
- # image_attention_mask = model_kwargs["image_attention_mask"]
208
- # last_mask = image_attention_mask[:, -1, :].unsqueeze(1)
209
- # model_kwargs["image_attention_mask"] = last_mask
210
 
211
  # Get the precomputed image_hidden_states
212
  model_kwargs["image_hidden_states"] = outputs.image_hidden_states
@@ -234,7 +224,6 @@ def prepare_inputs_for_generation(input_ids, past_key_values=None, **kwargs):
234
 
235
  pixel_values = kwargs.get("pixel_values", None)
236
  image_hidden_states = kwargs.get("image_hidden_states", None)
237
- # image_attention_mask = kwargs.get("image_attention_mask", None)
238
 
239
  return {
240
  "input_ids": input_ids,
@@ -245,7 +234,6 @@ def prepare_inputs_for_generation(input_ids, past_key_values=None, **kwargs):
245
  "token_type_ids": token_type_ids,
246
  "pixel_values": pixel_values,
247
  "image_hidden_states": image_hidden_states,
248
- # "image_attention_mask": image_attention_mask,
249
  }
250
 
251
 
@@ -696,7 +684,7 @@ class MistralAttention(nn.Module):
696
  and "Generating Long Sequences with Sparse Transformers".
697
  """
698
 
699
- def __init__(self, config: Img2HTMLConfig, qk_layer_norms: bool = False):
700
  super().__init__()
701
  self.config = config
702
  self.hidden_size = config.hidden_size
@@ -1091,7 +1079,7 @@ class MistralFlashAttention2(MistralAttention):
1091
 
1092
 
1093
  class MistralDecoderLayer(nn.Module):
1094
- def __init__(self, config: Img2HTMLConfig):
1095
  super().__init__()
1096
  self.hidden_size = config.hidden_size
1097
  self.self_attn = (
@@ -1174,7 +1162,7 @@ MISTRAL_START_DOCSTRING = r"""
1174
  and behavior.
1175
 
1176
  Parameters:
1177
- config ([`Img2HTMLConfig`]):
1178
  Model configuration class with all the parameters of the model. Initializing with a config file does not
1179
  load the weights associated with the model, only the configuration. Check out the
1180
  [`~PreTrainedModel.from_pretrained`] method to load the model weights.
@@ -1186,7 +1174,7 @@ MISTRAL_START_DOCSTRING = r"""
1186
  MISTRAL_START_DOCSTRING,
1187
  )
1188
  class VMistralPreTrainedModel(PreTrainedModel):
1189
- config_class = Img2HTMLConfig
1190
  base_model_prefix = "model"
1191
  supports_gradient_checkpointing = True
1192
  _no_split_modules = ["MistralDecoderLayer"]
@@ -1288,10 +1276,10 @@ class VMistralModel(VMistralPreTrainedModel):
1288
  Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]
1289
 
1290
  Args:
1291
- config: Img2HTMLConfig
1292
  """
1293
 
1294
- def __init__(self, config: Img2HTMLConfig, vision_model=None):
1295
  super().__init__(config)
1296
  self.config = config
1297
  self.padding_idx = config.pad_token_id
@@ -1435,7 +1423,7 @@ class VMistralModel(VMistralPreTrainedModel):
1435
  output_attentions: Optional[bool] = None,
1436
  output_hidden_states: Optional[bool] = None,
1437
  return_dict: Optional[bool] = None,
1438
- ) -> Union[Tuple, Img2HTMLBaseModelOutputWithPast]:
1439
  device = input_ids.device if input_ids is not None else inputs_embeds.device
1440
 
1441
  output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
@@ -1599,7 +1587,7 @@ class VMistralModel(VMistralPreTrainedModel):
1599
  for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, image_hidden_states]
1600
  if v is not None
1601
  )
1602
- return Img2HTMLBaseModelOutputWithPast(
1603
  last_hidden_state=hidden_states,
1604
  past_key_values=next_cache,
1605
  hidden_states=all_hidden_states,
@@ -1608,7 +1596,7 @@ class VMistralModel(VMistralPreTrainedModel):
1608
  )
1609
 
1610
 
1611
- class Img2HTMLForVisionText2Text(VMistralPreTrainedModel):
1612
  _tied_weights_keys = ["lm_head.weight"]
1613
 
1614
  def __init__(self, config, vision_model=None):
@@ -1665,7 +1653,7 @@ class Img2HTMLForVisionText2Text(VMistralPreTrainedModel):
1665
  output_embeddings.out_additional_features = input_embeddings.num_additional_embeddings
1666
 
1667
  @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
1668
- @replace_return_docstrings(output_type=Img2HTMLCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1669
  def forward(
1670
  self,
1671
  input_ids: torch.LongTensor = None,
@@ -1680,7 +1668,7 @@ class Img2HTMLForVisionText2Text(VMistralPreTrainedModel):
1680
  output_attentions: Optional[bool] = None,
1681
  output_hidden_states: Optional[bool] = None,
1682
  return_dict: Optional[bool] = None,
1683
- ) -> Union[Tuple, Img2HTMLCausalLMOutputWithPast]:
1684
  r"""
1685
  Args:
1686
  labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
@@ -1736,7 +1724,7 @@ class Img2HTMLForVisionText2Text(VMistralPreTrainedModel):
1736
  output = (logits,) + outputs[1:]
1737
  return (loss,) + output if loss is not None else output
1738
 
1739
- return Img2HTMLCausalLMOutputWithPast(
1740
  loss=loss,
1741
  logits=logits,
1742
  past_key_values=outputs.past_key_values,
 
17
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
  # See the License for the specific language governing permissions and
19
  # limitations under the License.
20
+ """ PyTorch VMistral model."""
21
  from dataclasses import dataclass
22
  import inspect
23
  import math
 
43
  from transformers.utils import logging
44
  from transformers.modeling_outputs import ModelOutput
45
 
46
+ from .configuration_vmistral import VMistralConfig
47
  from .vision import SiglipVisionModel
48
 
49
 
 
55
 
56
  logger = logging.get_logger(__name__)
57
 
58
+ _CONFIG_FOR_DOC = "VMistralConfig"
59
 
60
+ VMistral_PRETRAINED_MODEL_ARCHIVE_LIST = [
61
+ "HuggingFaceM4/VLM_WebSight_finetuned"
62
  ]
63
 
64
  @dataclass
65
+ class VMistralBaseModelOutputWithPast(ModelOutput):
66
  """
67
+ Base class for VMistral model's outputs that may also contain a past key/values (to speed up sequential decoding).
68
 
69
  Args:
70
  last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
 
107
 
108
 
109
  @dataclass
110
+ class VMistralCausalLMOutputWithPast(ModelOutput):
111
  """
112
+ Base class for VMistral causal language model (or autoregressive) outputs.
113
 
114
  Args:
115
  loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
 
162
  input_ids = input_ids.index_select(0, expanded_return_idx)
163
  model_kwargs["pixel_values"] = model_kwargs.get("pixel_values", None)
164
  model_kwargs["image_hidden_states"] = model_kwargs.get("image_hidden_states", None)
 
165
 
166
  if "token_type_ids" in model_kwargs:
167
  token_type_ids = model_kwargs["token_type_ids"]
 
170
  if attention_mask is not None:
171
  model_kwargs["attention_mask"] = attention_mask.index_select(0, expanded_return_idx)
172
 
 
 
 
 
 
173
  if model_kwargs["pixel_values"] is not None:
174
  model_kwargs["pixel_values"] = model_kwargs["pixel_values"].index_select(0, expanded_return_idx)
175
 
 
197
  model_kwargs["attention_mask"] = torch.cat(
198
  [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
199
  )
 
 
 
 
200
 
201
  # Get the precomputed image_hidden_states
202
  model_kwargs["image_hidden_states"] = outputs.image_hidden_states
 
224
 
225
  pixel_values = kwargs.get("pixel_values", None)
226
  image_hidden_states = kwargs.get("image_hidden_states", None)
 
227
 
228
  return {
229
  "input_ids": input_ids,
 
234
  "token_type_ids": token_type_ids,
235
  "pixel_values": pixel_values,
236
  "image_hidden_states": image_hidden_states,
 
237
  }
238
 
239
 
 
684
  and "Generating Long Sequences with Sparse Transformers".
685
  """
686
 
687
+ def __init__(self, config: VMistralConfig, qk_layer_norms: bool = False):
688
  super().__init__()
689
  self.config = config
690
  self.hidden_size = config.hidden_size
 
1079
 
1080
 
1081
  class MistralDecoderLayer(nn.Module):
1082
+ def __init__(self, config: VMistralConfig):
1083
  super().__init__()
1084
  self.hidden_size = config.hidden_size
1085
  self.self_attn = (
 
1162
  and behavior.
1163
 
1164
  Parameters:
1165
+ config ([`VMistralConfig`]):
1166
  Model configuration class with all the parameters of the model. Initializing with a config file does not
1167
  load the weights associated with the model, only the configuration. Check out the
1168
  [`~PreTrainedModel.from_pretrained`] method to load the model weights.
 
1174
  MISTRAL_START_DOCSTRING,
1175
  )
1176
  class VMistralPreTrainedModel(PreTrainedModel):
1177
+ config_class = VMistralConfig
1178
  base_model_prefix = "model"
1179
  supports_gradient_checkpointing = True
1180
  _no_split_modules = ["MistralDecoderLayer"]
 
1276
  Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]
1277
 
1278
  Args:
1279
+ config: VMistralConfig
1280
  """
1281
 
1282
+ def __init__(self, config: VMistralConfig, vision_model=None):
1283
  super().__init__(config)
1284
  self.config = config
1285
  self.padding_idx = config.pad_token_id
 
1423
  output_attentions: Optional[bool] = None,
1424
  output_hidden_states: Optional[bool] = None,
1425
  return_dict: Optional[bool] = None,
1426
+ ) -> Union[Tuple, VMistralBaseModelOutputWithPast]:
1427
  device = input_ids.device if input_ids is not None else inputs_embeds.device
1428
 
1429
  output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
 
1587
  for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, image_hidden_states]
1588
  if v is not None
1589
  )
1590
+ return VMistralBaseModelOutputWithPast(
1591
  last_hidden_state=hidden_states,
1592
  past_key_values=next_cache,
1593
  hidden_states=all_hidden_states,
 
1596
  )
1597
 
1598
 
1599
+ class VMistralForVisionText2Text(VMistralPreTrainedModel):
1600
  _tied_weights_keys = ["lm_head.weight"]
1601
 
1602
  def __init__(self, config, vision_model=None):
 
1653
  output_embeddings.out_additional_features = input_embeddings.num_additional_embeddings
1654
 
1655
  @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
1656
+ @replace_return_docstrings(output_type=VMistralCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1657
  def forward(
1658
  self,
1659
  input_ids: torch.LongTensor = None,
 
1668
  output_attentions: Optional[bool] = None,
1669
  output_hidden_states: Optional[bool] = None,
1670
  return_dict: Optional[bool] = None,
1671
+ ) -> Union[Tuple, VMistralCausalLMOutputWithPast]:
1672
  r"""
1673
  Args:
1674
  labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
 
1724
  output = (logits,) + outputs[1:]
1725
  return (loss,) + output if loss is not None else output
1726
 
1727
+ return VMistralCausalLMOutputWithPast(
1728
  loss=loss,
1729
  logits=logits,
1730
  past_key_values=outputs.past_key_values,
processing_idefics.py ADDED
@@ -0,0 +1,414 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ Processor class for IDEFICS.
17
+ """
18
+
19
+ from typing import Callable, List, Optional, Union
20
+ from urllib.parse import urlparse
21
+
22
+ from ...feature_extraction_utils import BatchFeature
23
+ from ...processing_utils import ProcessorMixin
24
+ from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, TextInput, TruncationStrategy
25
+ from ...utils import TensorType, is_torch_available
26
+
27
+
28
+ if is_torch_available():
29
+ import torch
30
+
31
+
32
+ IMAGE_TOKEN = "<image>"
33
+
34
+
35
+ # copied from m4.training.packing
36
+ def incremental_to_binary_attention_mask(incremental_mask, num_classes=-1):
37
+ # This function converts: [-1, 0, 1] => [[0, 0], [1, 0], [0, 1]]
38
+
39
+ # If any of images index are more than num_classes, set them to -1.
40
+ # Words after the max number of images allowed have been seen don't attend on anything
41
+ if num_classes != -1:
42
+ incremental_mask[incremental_mask >= num_classes] = -1
43
+
44
+ negatives = incremental_mask == -1
45
+ incremental_mask[negatives] = 0
46
+ attn_mask = torch.nn.functional.one_hot(incremental_mask, num_classes=num_classes)
47
+ attn_mask[negatives, :] = 0
48
+ return attn_mask
49
+
50
+
51
+ # copied from m4.training.packing
52
+ def image_attention_mask_for_packed_input_ids(input_ids, tokenizer):
53
+ image_attention_mask = torch.full_like(input_ids, fill_value=-1)
54
+ next_image_attention_mask = torch.full_like(input_ids, fill_value=-1)
55
+ image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
56
+ eod_token_id = tokenizer.eos_token_id
57
+ for batch_idx in range(input_ids.size(0)):
58
+ count = -1
59
+ seen_eod = False
60
+ for idx, token_id in enumerate(input_ids[batch_idx]):
61
+ if token_id == image_token_id:
62
+ count += 1
63
+ image_attention_mask[batch_idx][idx] = count
64
+ seen_eod = False
65
+ else:
66
+ image_attention_mask[batch_idx][idx] = count
67
+
68
+ if seen_eod:
69
+ image_attention_mask[batch_idx][idx] = -1
70
+
71
+ if token_id == eod_token_id:
72
+ seen_eod = True
73
+
74
+ for batch_idx in range(input_ids.size(0)):
75
+ count = -1
76
+ seen_eod = False
77
+ for idx in range(input_ids[batch_idx].size(0) - 1, -1, -1):
78
+ token_id = input_ids[batch_idx][idx]
79
+ if token_id == image_token_id:
80
+ count += 1
81
+ next_image_attention_mask[batch_idx][idx] = count
82
+ seen_eod = False
83
+ else:
84
+ next_image_attention_mask[batch_idx][idx] = count
85
+
86
+ if token_id == eod_token_id:
87
+ seen_eod = True
88
+
89
+ if seen_eod:
90
+ next_image_attention_mask[batch_idx][idx] = -1
91
+
92
+ non_negative_indices = next_image_attention_mask[batch_idx] != -1
93
+ next_image_attention_mask[batch_idx][non_negative_indices] -= count
94
+ next_image_attention_mask[batch_idx][non_negative_indices] *= -1
95
+
96
+ return image_attention_mask, next_image_attention_mask
97
+
98
+
99
+ def is_url(string):
100
+ """Checks if the passed string contains a valid url and nothing else. e.g. if space is included it's immediately
101
+ invalidated the url"""
102
+ if " " in string:
103
+ return False
104
+ result = urlparse(string)
105
+ return all([result.scheme, result.netloc])
106
+
107
+
108
+ class IdeficsProcessor(ProcessorMixin):
109
+ r"""
110
+ Constructs a IDEFICS processor which wraps a LLama tokenizer and IDEFICS image processor into a single processor.
111
+
112
+ [`IdeficsProcessor`] offers all the functionalities of [`IdeficsImageProcessor`] and [`LlamaTokenizerFast`]. See
113
+ the docstring of [`~IdeficsProcessor.__call__`] and [`~IdeficsProcessor.decode`] for more information.
114
+
115
+ Args:
116
+ image_processor (`IdeficsImageProcessor`):
117
+ An instance of [`IdeficsImageProcessor`]. The image processor is a required input.
118
+ tokenizer (`LlamaTokenizerFast`):
119
+ An instance of [`LlamaTokenizerFast`]. The tokenizer is a required input.
120
+ image_size (`int`, *optional*, defaults to 224): Image size (assuming a square image)
121
+ """
122
+
123
+ attributes = ["image_processor", "tokenizer"]
124
+ image_processor_class = "IdeficsImageProcessor"
125
+ tokenizer_class = "LlamaTokenizerFast"
126
+
127
+ def __init__(self, image_processor, tokenizer=None, image_size=224, add_end_of_utterance_token=None, **kwargs):
128
+ if image_processor is None:
129
+ raise ValueError("You need to specify an `image_processor`.")
130
+ if tokenizer is None:
131
+ raise ValueError("You need to specify a `tokenizer`.")
132
+
133
+ super().__init__(image_processor, tokenizer)
134
+ self.current_processor = self.image_processor
135
+ self.image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
136
+
137
+ self.default_image_dims = (
138
+ self.image_processor.image_num_channels,
139
+ self.image_processor.image_size,
140
+ self.image_processor.image_size,
141
+ )
142
+
143
+ self.tokenizer_was_trained_with_end_of_utterance_token = (
144
+ True
145
+ if "<end_of_utterance>" in self.tokenizer.special_tokens_map.get("additional_special_tokens", [])
146
+ else False
147
+ )
148
+
149
+ def __call__(
150
+ self,
151
+ prompts: Union[List[TextInput], List[List[TextInput]]],
152
+ padding: Union[bool, str, PaddingStrategy] = False,
153
+ truncation: Union[bool, str, TruncationStrategy] = None,
154
+ max_length: Optional[int] = None,
155
+ transform: Callable = None,
156
+ add_eos_token=False,
157
+ add_end_of_utterance_token=None,
158
+ debug=False,
159
+ return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
160
+ ) -> BatchEncoding:
161
+ """This method takes batched or non-batched prompts made of text and images and converts them into prompts that
162
+ the model was trained on and prepares the image pixel values for the model to process.
163
+
164
+ Args:
165
+ prompts (`Union[List[TextInput], [List[List[TextInput]]]]`):
166
+ either a single prompt or a batched list of prompts - see the detailed description immediately after
167
+ the end of the arguments doc section.
168
+ padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
169
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding
170
+ index) among:
171
+ - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
172
+ sequence if provided).
173
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
174
+ acceptable input length for the model if that argument is not provided.
175
+ - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
176
+ lengths).
177
+ max_length (`int`, *optional*):
178
+ Maximum length of the returned list and optionally padding length (see above).
179
+ truncation (`bool`, *optional*):
180
+ Activates truncation to cut input sequences longer than `max_length` to `max_length`.
181
+ transform (`Callable`, *optional*):
182
+ A custom transform function that accepts a single image can be passed for training. For example,
183
+ `torchvision.Compose` can be used to compose multiple functions. If `None` a preset inference-specific
184
+ set of transforms will be applied to the images
185
+ add_eos_token (`bool`, *optional*, defaults to `False`):
186
+ Adds `eos_token` at the end of the final prompt if True`
187
+ add_end_of_utterance_token (`bool`, *optional*)
188
+ Whether to automatically add `<end_of_utterance>` after each prompt's text input (unless followed by an
189
+ image). If `None` the tokenizer will be checked instead and if this token is found in
190
+ `additional_special_tokens` then the value will be `True`.
191
+ debug (`bool`, *optional*, defaults to `False`):
192
+ `True` value will help debug prompt generation by dumping useful information
193
+ return_tensors (`str` or `TensorType`, *optional*, defaults to `TensorType.PYTORCH`):
194
+ The type of tensors to return. Can be one of:
195
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
196
+
197
+ Returns:
198
+ a dict with entries: `input_ids`, `attention_mask`, `pixel_values`, `image_attention_mask` which can be
199
+ directly passed to `model.generate`
200
+
201
+ Detailed explanation:
202
+
203
+ Each entry in `prompts` is either a text to be passed as is or an image that will be processed.
204
+
205
+ An image can be either an image object (`PIL.Image`) or a url from which the image can be retrieved.
206
+
207
+ When the processor encounters an image it'll inject `<fake_token_around_image><image><fake_token_around_image>`
208
+ entry into the prompt.
209
+
210
+ Example:
211
+
212
+ ```python
213
+ checkpoint = "HuggingFaceM4/idefics-9b"
214
+ processor = AutoProcessor.from_pretrained(checkpoint)
215
+ url = "https://hips.hearstapps.com/hmg-prod/images/cute-photos-of-cats-in-grass-1593184777.jpg"
216
+ img = processor.image_processor.fetch_images([url])[0]
217
+
218
+ prompts = [
219
+ "User:",
220
+ img,
221
+ "Describe this image.\nAssistant: An image of two kittens in grass.\n",
222
+ "User:",
223
+ "https://hips.hearstapps.com/hmg-prod/images/dog-puns-1581708208.jpg",
224
+ "Describe this image.\nAssistant:",
225
+ ]
226
+
227
+ inputs = processor(prompts, return_tensors="pt")
228
+ generated_ids = model.generate(**inputs, max_length=100)
229
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
230
+ ```
231
+
232
+ In this example the `prompts` will be converted into:
233
+
234
+ ```
235
+ <s>User:<fake_token_around_image><image><fake_token_around_image>Describe this image.
236
+ Assistant: An image of two kittens in grass.
237
+ User:<fake_token_around_image><image><fake_token_around_image>Describe this image.
238
+ Assistant:'
239
+ ```
240
+
241
+ and the two images will be massaged using [`IdeficsImageProcessor.__call__`] method and placed inside the
242
+ `pixel_values` dict entry of the return value.
243
+
244
+ This example also examplifies that images can be passed as objects or as text urls. It can be seen that the
245
+ first image is passed as object and the second one as a url.
246
+
247
+ To do training do:
248
+
249
+ ```python
250
+ image_transform = transforms.Compose(
251
+ [
252
+ transforms.RandomResizedCrop(
253
+ (w, h), scale=(0.9, 1.0), interpolation=transforms.InterpolationMode.BICUBIC
254
+ ),
255
+ transforms.ToTensor(),
256
+ transforms.Normalize(mean=self.image_mean, std=self.image_std),
257
+ ]
258
+ )
259
+ inputs = processor(prompts, transform=image_transform, return_tensors="pt")
260
+ ```
261
+
262
+ In order to help debug prompt generation enable `debug=True` which will show you what's happening.
263
+
264
+ """
265
+
266
+ # if the value isn't overriden by the user, check if the tokenizer was trained with this token and then use it
267
+ if add_end_of_utterance_token is None:
268
+ add_end_of_utterance_token = self.tokenizer_was_trained_with_end_of_utterance_token
269
+
270
+ # turn non-batched prompts into batched
271
+ if not any(isinstance(i, list) for i in prompts):
272
+ prompts = [prompts]
273
+
274
+ fake_token = "<fake_token_around_image>"
275
+ image_token = "<image>"
276
+ end_of_utterance_token = "<end_of_utterance>"
277
+
278
+ def image_tokens(last_was_image):
279
+ if last_was_image:
280
+ return image_token + fake_token
281
+ else:
282
+ return fake_token + image_token + fake_token
283
+
284
+ all_prompts = []
285
+ all_images = []
286
+ for sample in prompts:
287
+ # the model was trained on samples starting with <s>
288
+ full_text = f"{self.tokenizer.bos_token}"
289
+
290
+ # an image can either be an image object in the item or the url, everything else is a verbatim prompt text
291
+ image_objects = []
292
+ last_was_image = False
293
+ last_was_text = False
294
+ for i, item in enumerate(sample):
295
+ if i > 0:
296
+ last_was_text = True if not last_was_image else False
297
+
298
+ if isinstance(item, str):
299
+ item = item.strip(" ")
300
+ if is_url(item):
301
+ image = self.image_processor.fetch_images(item)
302
+ full_text += image_tokens(last_was_image)
303
+ image_objects.append(image)
304
+ last_was_image = True
305
+ else:
306
+ # we add end_of_utterance_token between each subsequent text prompts (but not at the last one!)
307
+ if add_end_of_utterance_token and last_was_text:
308
+ full_text += end_of_utterance_token
309
+ full_text += item
310
+ last_was_image = False
311
+ else:
312
+ # must be an image obj
313
+ full_text += image_tokens(last_was_image)
314
+ image_objects.append(item)
315
+ last_was_image = True
316
+
317
+ if add_eos_token:
318
+ full_text += self.tokenizer.eos_token
319
+
320
+ if debug is True:
321
+ print(f"{full_text=}")
322
+
323
+ image_objects = self.image_processor(image_objects, transform=transform)
324
+
325
+ all_prompts.append(full_text)
326
+ all_images.append(image_objects)
327
+
328
+ text_encoding = self.tokenizer(
329
+ text=all_prompts,
330
+ add_special_tokens=False,
331
+ padding=padding,
332
+ truncation=truncation,
333
+ max_length=max_length,
334
+ )
335
+ all_texts = text_encoding["input_ids"]
336
+
337
+ max_seq_len = max(len(x) for x in all_texts)
338
+
339
+ # max_num_images has to be at least 1 even when there are no images
340
+ max_num_images = max(len(x) for x in all_images)
341
+ max_num_images = max(1, max_num_images)
342
+
343
+ at_least_one_image = sum(len(x) for x in all_images) > 0
344
+ output_input_ids = []
345
+ output_images = []
346
+ output_attention_masks = []
347
+ for text, images in zip(all_texts, all_images):
348
+ padded_input_ids = [self.tokenizer.pad_token_id] * max_seq_len
349
+ unpadded_seq_len = len(text)
350
+ start = max_seq_len - unpadded_seq_len
351
+ padded_input_ids[start:] = text[:max_seq_len]
352
+
353
+ attention_mask = torch.zeros((max_seq_len,), dtype=torch.long)
354
+ attention_mask[start:] = 1
355
+
356
+ image_count = padded_input_ids.count(self.image_token_id)
357
+ local_max_num_images = min(image_count, max_num_images)
358
+
359
+ current_images = images[:local_max_num_images]
360
+
361
+ if len(current_images) > 0:
362
+ padded_image_tensor = torch.zeros(max_num_images, *current_images.size()[1:])
363
+ padded_image_tensor[: current_images.size(0)] = current_images
364
+ else:
365
+ padded_image_tensor = torch.zeros(max_num_images, *self.default_image_dims)
366
+
367
+ output_images.append(padded_image_tensor)
368
+ output_input_ids.append(torch.tensor(padded_input_ids))
369
+
370
+ output_attention_masks.append(attention_mask)
371
+
372
+ output_input_ids = torch.stack(output_input_ids)
373
+ output_images = torch.stack(output_images)
374
+ output_attention_masks = torch.stack(output_attention_masks)
375
+
376
+ if at_least_one_image:
377
+ image_attention_mask, _ = image_attention_mask_for_packed_input_ids(output_input_ids, self.tokenizer)
378
+ image_attention_mask = incremental_to_binary_attention_mask(
379
+ image_attention_mask, num_classes=max_num_images
380
+ )
381
+ else:
382
+ # in full language mode we set the image mask to all-0s
383
+ image_attention_mask = torch.zeros(
384
+ output_input_ids.shape[0], output_input_ids.shape[1], 1, dtype=torch.bool
385
+ )
386
+
387
+ return BatchFeature(
388
+ data={
389
+ "input_ids": output_input_ids,
390
+ "attention_mask": output_attention_masks,
391
+ "pixel_values": output_images,
392
+ "image_attention_mask": image_attention_mask,
393
+ }
394
+ )
395
+
396
+ def batch_decode(self, *args, **kwargs):
397
+ """
398
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
399
+ refer to the docstring of this method for more information.
400
+ """
401
+ return self.tokenizer.batch_decode(*args, **kwargs)
402
+
403
+ def decode(self, *args, **kwargs):
404
+ """
405
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
406
+ the docstring of this method for more information.
407
+ """
408
+ return self.tokenizer.decode(*args, **kwargs)
409
+
410
+ @property
411
+ def model_input_names(self):
412
+ tokenizer_input_names = self.tokenizer.model_input_names
413
+ image_processor_input_names = self.image_processor.model_input_names
414
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))