lewtun HF staff commited on
Commit
a4f14d5
1 Parent(s): eb6baf0

Add details

Browse files
Files changed (2) hide show
  1. README.md +98 -25
  2. thumbnail.png +0 -0
README.md CHANGED
@@ -1,51 +1,124 @@
1
  ---
2
- license: other
3
- base_model: lewtun/zephyr-7b-gemma-sft
4
  tags:
5
  - alignment-handbook
6
  - trl
7
  - dpo
8
  - generated_from_trainer
9
- - trl
10
- - dpo
11
- - generated_from_trainer
12
  datasets:
13
  - argilla/dpo-mix-7k
 
14
  model-index:
15
- - name: zephyr-7b-gemma-dpo
16
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  ---
18
 
19
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
20
- should probably proofread and complete it, then remove this comment. -->
21
 
22
- # zephyr-7b-gemma-dpo
23
 
24
- This model is a fine-tuned version of [lewtun/zephyr-7b-gemma-sft](https://huggingface.co/lewtun/zephyr-7b-gemma-sft) on the argilla/dpo-mix-7k dataset.
25
- It achieves the following results on the evaluation set:
26
- - Loss: 0.4695
27
- - Rewards/chosen: -3.3746
28
- - Rewards/rejected: -4.9715
29
- - Rewards/accuracies: 0.7188
30
- - Rewards/margins: 1.5970
31
- - Logps/rejected: -459.4853
32
- - Logps/chosen: -429.9115
33
- - Logits/rejected: 86.4684
34
- - Logits/chosen: 92.8200
35
 
36
  ## Model description
37
 
38
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
  ## Intended uses & limitations
41
 
42
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
  ## Training and evaluation data
45
 
46
- More information needed
47
 
48
- ## Training procedure
 
 
 
 
 
 
 
 
 
 
 
49
 
50
  ### Training hyperparameters
51
 
 
1
  ---
2
+ license: mit
3
+ base_model: HuggingFaceH4/zephyr-7b-gemma-sft
4
  tags:
5
  - alignment-handbook
6
  - trl
7
  - dpo
8
  - generated_from_trainer
 
 
 
9
  datasets:
10
  - argilla/dpo-mix-7k
11
+ pipeline_tag: text-generation
12
  model-index:
13
+ - name: zephyr-7b-gemma
14
+ results:
15
+ # MT-Bench (taken from model card)
16
+ - task:
17
+ type: text-generation
18
+ name: Text Generation
19
+ dataset:
20
+ name: MT-Bench
21
+ type: unknown
22
+ metrics:
23
+ - type: unknown
24
+ name: score
25
+ value: 7.81
26
+ source:
27
+ url: https://huggingface.co/spaces/lmsys/mt-bench
28
  ---
29
 
30
+ <img src="https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma/resolve/main/thumbnail.png" alt="Zephyr 7B Gemma Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
 
31
 
32
+ # Model Card for Zephyr 7B Gemma
33
 
34
+ Zephyr is a series of language models that are trained to act as helpful assistants. Zephyr 7B Gemma is the third model in the series, and is a fine-tuned version of [`google/gemma-7b`](https://huggingface.co/google/gemma-7b) that was trained on on a mix of publicly available, synthetic datasets using Direct Preference Optimization (DPO). You can reproduce the training of this model via the recipe provided in the [Alignment Handbook](https://github.com/huggingface/alignment-handbook).
 
 
 
 
 
 
 
 
 
 
35
 
36
  ## Model description
37
 
38
+ - **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
39
+ - **Language(s) (NLP):** Primarily English
40
+ - **License:** MIT
41
+ - **Finetuned from model:** [google/gemma-7b](https://huggingface.co/google/gemma-7b)
42
+
43
+ ### Model Sources
44
+
45
+ <!-- Provide the basic links for the model. -->
46
+
47
+ - **Repository:** https://github.com/huggingface/alignment-handbook
48
+ - **Demo:** https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat
49
+
50
+ ## Performance
51
+
52
+ At the time of release, Zephyr 7B Gemma is the highest ranked 7B chat model on the [MT-Bench](https://huggingface.co/spaces/lmsys/mt-bench) and [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/) benchmarks:
53
+
54
+
55
+
56
+ In particular, on several categories of MT-Bench, Zephyr-7B-β has strong performance compared to larger open models like Llama2-Chat-70B:
57
+
58
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6200d0a443eb0913fa2df7cc/raxvt5ma16d7T23my34WC.png)
59
+
60
+ However, on more complex tasks like coding and mathematics, Zephyr-7B-β lags behind proprietary models and more research is needed to close the gap.
61
 
62
  ## Intended uses & limitations
63
 
64
+ The model was initially fine-tuned on a filtered and preprocessed of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT.
65
+ We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contains 64k prompts and model completions that are ranked by GPT-4. As a result, the model can be used for chat and you can check out our [demo](https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat) to test its capabilities.
66
+
67
+ You can find the datasets used for training Zephyr-7B-β [here](https://huggingface.co/collections/HuggingFaceH4/zephyr-7b-6538c6d6d5ddd1cbb1744a66)
68
+
69
+ Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
70
+
71
+ ```python
72
+ # Install transformers from source - only needed for versions <= v4.38.1
73
+ # pip install git+https://github.com/huggingface/transformers.git
74
+ # pip install accelerate
75
+
76
+ import torch
77
+ from transformers import pipeline
78
+
79
+ pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-gemma", torch_dtype=torch.bfloat16, device_map="auto")
80
+
81
+ # We use ChatML to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
82
+ messages = [
83
+ {
84
+ "role": "system",
85
+ "content": "You are a friendly chatbot who always responds in the style of a pirate",
86
+ },
87
+ {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
88
+ ]
89
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
90
+ outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
91
+ print(outputs[0]["generated_text"])
92
+ # <|system|>
93
+ # You are a friendly chatbot who always responds in the style of a pirate.</s>
94
+ # <|user|>
95
+ # How many helicopters can a human eat in one sitting?</s>
96
+ # <|assistant|>
97
+ # Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food!
98
+ ```
99
+
100
+ ## Bias, Risks, and Limitations
101
+
102
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
103
+
104
+ Zephyr 7B Gemma has not been aligned to human preferences for safety within the RLHF phase or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). It is also unknown what the size and composition of the corpus was used to train the base model (`google/gemma-7b`), however it is likely to have included a mix of Web data and technical sources like books and code. See the [StarCoder2 model card](https://huggingface.co/bigcode/starcoder2-15b) for an example of this.
105
+
106
 
107
  ## Training and evaluation data
108
 
 
109
 
110
+ This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-gemma-sft](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-sft) on the argilla/dpo-mix-7k dataset.
111
+
112
+ It achieves the following results on the evaluation set:
113
+ - Loss: 0.4695
114
+ - Rewards/chosen: -3.3746
115
+ - Rewards/rejected: -4.9715
116
+ - Rewards/accuracies: 0.7188
117
+ - Rewards/margins: 1.5970
118
+ - Logps/rejected: -459.4853
119
+ - Logps/chosen: -429.9115
120
+ - Logits/rejected: 86.4684
121
+ - Logits/chosen: 92.8200
122
 
123
  ### Training hyperparameters
124
 
thumbnail.png ADDED