Update README.md
Browse files
README.md
CHANGED
@@ -9,199 +9,468 @@ metrics:
|
|
9 |
- accuracy
|
10 |
- f1
|
11 |
- perplexity
|
|
|
12 |
---
|
13 |
|
14 |
-
# Model Card for
|
15 |
|
16 |
-
|
17 |
|
18 |
-
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
|
19 |
|
20 |
-
|
21 |
|
22 |
-
### Model Description
|
23 |
|
24 |
-
|
25 |
|
|
|
26 |
|
|
|
27 |
|
28 |
-
- **Developed by:** [More Information Needed]
|
29 |
-
- **Funded by [optional]:** [More Information Needed]
|
30 |
-
- **Shared by [optional]:** [More Information Needed]
|
31 |
-
- **Model type:** [More Information Needed]
|
32 |
-
- **Language(s) (NLP):** [More Information Needed]
|
33 |
-
- **License:** [More Information Needed]
|
34 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
35 |
|
36 |
-
### Model Sources [optional]
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
- **Repository:** [More Information Needed]
|
41 |
-
- **Paper [optional]:** [More Information Needed]
|
42 |
-
- **Demo [optional]:** [More Information Needed]
|
43 |
|
44 |
-
##
|
45 |
-
|
46 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
47 |
-
|
48 |
-
### Direct Use
|
49 |
-
|
50 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
51 |
-
|
52 |
-
[More Information Needed]
|
53 |
-
|
54 |
-
### Downstream Use [optional]
|
55 |
-
|
56 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
57 |
-
|
58 |
-
[More Information Needed]
|
59 |
-
|
60 |
-
### Out-of-Scope Use
|
61 |
-
|
62 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
63 |
-
|
64 |
-
[More Information Needed]
|
65 |
-
|
66 |
-
## Bias, Risks, and Limitations
|
67 |
-
|
68 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
69 |
-
|
70 |
-
[More Information Needed]
|
71 |
-
|
72 |
-
### Recommendations
|
73 |
-
|
74 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
75 |
-
|
76 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
77 |
-
|
78 |
-
## How to Get Started with the Model
|
79 |
|
80 |
Use the code below to get started with the model.
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
## Training Details
|
85 |
-
|
86 |
-
### Training Data
|
87 |
-
|
88 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
### Training Procedure
|
93 |
-
|
94 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
95 |
-
|
96 |
-
#### Preprocessing [optional]
|
97 |
-
|
98 |
-
[More Information Needed]
|
99 |
-
|
100 |
-
|
101 |
-
#### Training Hyperparameters
|
102 |
-
|
103 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
104 |
-
|
105 |
-
#### Speeds, Sizes, Times [optional]
|
106 |
-
|
107 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
108 |
-
|
109 |
-
[More Information Needed]
|
110 |
-
|
111 |
-
## Evaluation
|
112 |
-
|
113 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
114 |
-
|
115 |
-
### Testing Data, Factors & Metrics
|
116 |
-
|
117 |
-
#### Testing Data
|
118 |
|
119 |
-
|
120 |
|
121 |
-
|
122 |
|
123 |
-
|
124 |
|
125 |
-
|
126 |
|
127 |
-
[
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
-
|
130 |
|
131 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
132 |
|
133 |
-
|
134 |
|
135 |
-
|
136 |
|
137 |
-
[More Information Needed]
|
138 |
|
139 |
-
|
140 |
|
|
|
141 |
|
142 |
|
143 |
-
##
|
144 |
|
145 |
-
|
146 |
|
147 |
-
[More Information Needed]
|
148 |
|
149 |
-
|
150 |
|
151 |
-
|
152 |
|
153 |
-
|
154 |
|
155 |
-
- **Hardware Type:** [More Information Needed]
|
156 |
-
- **Hours used:** [More Information Needed]
|
157 |
-
- **Cloud Provider:** [More Information Needed]
|
158 |
-
- **Compute Region:** [More Information Needed]
|
159 |
-
- **Carbon Emitted:** [More Information Needed]
|
160 |
|
161 |
-
|
162 |
|
163 |
-
### Model Architecture and Objective
|
164 |
|
165 |
-
|
166 |
|
167 |
-
|
168 |
|
169 |
-
[
|
170 |
|
171 |
-
|
172 |
|
173 |
-
[More Information Needed]
|
174 |
|
175 |
-
|
176 |
|
177 |
-
|
178 |
|
179 |
-
## Citation [optional]
|
180 |
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
-
|
|
|
|
|
184 |
|
185 |
-
|
|
|
|
|
186 |
|
187 |
-
|
|
|
|
|
188 |
|
189 |
-
|
|
|
|
|
190 |
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
-
|
|
|
|
|
194 |
|
195 |
-
|
|
|
|
|
196 |
|
197 |
-
|
|
|
|
|
198 |
|
199 |
-
|
|
|
|
|
200 |
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
-
|
|
|
|
|
204 |
|
205 |
-
|
|
|
|
|
206 |
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
- accuracy
|
10 |
- f1
|
11 |
- perplexity
|
12 |
+
pipeline_tag: text-generation
|
13 |
---
|
14 |
|
15 |
+
# **Model Card for Basque Llama 13b**
|
16 |
|
17 |
+
Basque LLaMA is a collection of foundation models specifically tuned for Basque. Based on Meta’s LLaMA 2 model family, these models were further trained with Euscrawl, a highly curated Basque corpora ([Artetxe et al., 2022](https://aclanthology.org/2022.emnlp-main.499/)). Ranging from 7 billion to 70 billion parameters, these models are currently the biggest and best-performing LLMs built for Basque. This is the 13b repository, links to other models can be found in the index at the bottom.
|
18 |
|
|
|
19 |
|
20 |
+
# **Model Details**
|
21 |
|
|
|
22 |
|
23 |
+
## **Model Description**
|
24 |
|
25 |
+
Basque LLaMA is a family of Large Language Models (LLM) based on Meta’s [LLaMA models](https://huggingface.co/meta-llama). Current LLMs exhibit incredible performance for high-resource languages such as English, but, in the case of Basque and other low-resource languages, their performance is close to a random guesser. These limitations widen the gap between high- and low-resource languages when it comes to digital development. We present Basque LLaMA to overcome these limitations and promote the development of LLM-based technology and research for the Basque language. Basque LLaMA models follow the same architecture as their original counterparts and were further trained in Euscrawl v1 ([Artetxe et al., 2022](https://aclanthology.org/2022.emnlp-main.499/)), a high-quality Basque corpora.
|
26 |
|
27 |
+
The models are released in three sizes: 7B, 13B and 70B.
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
|
|
30 |
|
31 |
+
* **Developed by:** HiTZ Research Center & IXA Research group (University of the Basque Country UPV/EHU)
|
32 |
+
* **Model type:** Language model
|
33 |
+
* **Language(s) (NLP):** en, eu
|
34 |
+
* **License:** llama2
|
35 |
+
* **Parent Model:** meta-llama/Llama-2-13b
|
36 |
+
* **Contact:** [email protected]
|
37 |
|
|
|
|
|
|
|
38 |
|
39 |
+
## **Getting started**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
Use the code below to get started with the model.
|
42 |
|
43 |
+
```python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
from transformers import pipeline
|
46 |
|
47 |
+
pipe = pipeline("text-generation", model=”HiTZ/basque-llama-2-7b-v1”)
|
48 |
|
49 |
+
text = "Euskara adimen artifizialera iritsi da!"
|
50 |
|
51 |
+
pipe(text, max_new_tokens=50, num_beams=5)
|
52 |
|
53 |
+
>> [
|
54 |
+
{
|
55 |
+
'generated_text': 'Euskara adimen artifizialera iritsi da!\nEuskararen eta adimen artifizialaren arteko harremana aspaldikoa da,'
|
56 |
+
' baina azken urteotan aurrerapauso handiak eman dira arlo horretan'
|
57 |
+
}
|
58 |
+
]
|
59 |
|
60 |
+
```
|
61 |
|
|
|
62 |
|
63 |
+
# **Uses**
|
64 |
|
65 |
+
Basque LLaMA models are intended to be used with Basque data; for any other language the performance is not guaranteed. Same as the original, Basque LLaMA inherits the [LLaMA-2 License](https://ai.meta.com/llama/license/) which allows for commercial and research use.
|
66 |
|
|
|
67 |
|
68 |
+
## **Direct Use**
|
69 |
|
70 |
+
Basque LLaMA family models are pre-trained LLMs without any task-specific or instruction fine-tuning. That is, the model can either be prompted to perform a specific task or further fine-tuned for specific use cases.
|
71 |
|
72 |
|
73 |
+
## **Out-of-Scope Use**
|
74 |
|
75 |
+
The model was not fine-tuned to follow instructions or to work as a chat assistant, therefore, this kind of usage is not tested nor recommended.
|
76 |
|
|
|
77 |
|
78 |
+
# **Bias, Risks, and Limitations**
|
79 |
|
80 |
+
In an effort to alleviate the potentially disturbing or harmful content, Basque LLaMA has been trained on carefully selected and processed data which comes mainly from local media, national/regional newspapers, encyclopedias and blogs (see Euscrawl below). Still, the model is based on LLaMA models and can potentially carry the same bias, risk and limitations.
|
81 |
|
82 |
+
Please see the LLaMA’s _Ethical Considerations and Limitations _for further information.
|
83 |
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
# **Training Details**
|
86 |
|
|
|
87 |
|
88 |
+
## **Training Data**
|
89 |
|
90 |
+
The models were trained on EusCrawl v1, a high-quality corpus for Basque comprising 1.72M documents, 288M words, totalling 2.1GiB of uncompressed text. EusCrawl was built using ad-hoc scrapers to extract text from 33 Basque websites with high-quality content, resulting in cleaner text compared to general-purpose approaches.
|
91 |
|
92 |
+
See more details in the [EusCrawl](https://huggingface.co/datasets/HiTZ/euscrawl) dataset card.
|
93 |
|
94 |
+
Additionally, 100K documents of English data randomly selected from the [Pile](https://huggingface.co/datasets/EleutherAI/pile) dataset were also included to avoid catastrophic forgetting.
|
95 |
|
|
|
96 |
|
97 |
+
## **Training Procedure**
|
98 |
|
99 |
+
The models were trained using the GPT-Neox library on the HPC CINECA computing cluster. All the models were approximately trained with an effective batch size of 2M tokens for 1000 to 2000 steps.
|
100 |
|
|
|
101 |
|
102 |
+
<table>
|
103 |
+
<tr>
|
104 |
+
<td>Model
|
105 |
+
</td>
|
106 |
+
<td>Steps
|
107 |
+
</td>
|
108 |
+
<td>Sequence length
|
109 |
+
</td>
|
110 |
+
<td>Effective Batch size
|
111 |
+
</td>
|
112 |
+
<td>Total tokens
|
113 |
+
</td>
|
114 |
+
<td>GPU hours
|
115 |
+
</td>
|
116 |
+
</tr>
|
117 |
+
<tr>
|
118 |
+
<td>Basque LLaMA 7B
|
119 |
+
</td>
|
120 |
+
<td><p style="text-align: right">
|
121 |
+
2000</p>
|
122 |
|
123 |
+
</td>
|
124 |
+
<td><p style="text-align: right">
|
125 |
+
4096</p>
|
126 |
|
127 |
+
</td>
|
128 |
+
<td><p style="text-align: right">
|
129 |
+
2M tokens/step</p>
|
130 |
|
131 |
+
</td>
|
132 |
+
<td><p style="text-align: right">
|
133 |
+
4B</p>
|
134 |
|
135 |
+
</td>
|
136 |
+
<td><p style="text-align: right">
|
137 |
+
359.2h</p>
|
138 |
|
139 |
+
</td>
|
140 |
+
</tr>
|
141 |
+
<tr>
|
142 |
+
<td>Basque LLaMA 13B
|
143 |
+
</td>
|
144 |
+
<td><p style="text-align: right">
|
145 |
+
1000</p>
|
146 |
|
147 |
+
</td>
|
148 |
+
<td><p style="text-align: right">
|
149 |
+
4096</p>
|
150 |
|
151 |
+
</td>
|
152 |
+
<td><p style="text-align: right">
|
153 |
+
2M tokens/step</p>
|
154 |
|
155 |
+
</td>
|
156 |
+
<td><p style="text-align: right">
|
157 |
+
2B</p>
|
158 |
|
159 |
+
</td>
|
160 |
+
<td><p style="text-align: right">
|
161 |
+
468.8h</p>
|
162 |
|
163 |
+
</td>
|
164 |
+
</tr>
|
165 |
+
<tr>
|
166 |
+
<td>Basque LLaMA 70B
|
167 |
+
</td>
|
168 |
+
<td><p style="text-align: right">
|
169 |
+
1680</p>
|
170 |
|
171 |
+
</td>
|
172 |
+
<td><p style="text-align: right">
|
173 |
+
4096</p>
|
174 |
|
175 |
+
</td>
|
176 |
+
<td><p style="text-align: right">
|
177 |
+
2M tokens/step</p>
|
178 |
|
179 |
+
</td>
|
180 |
+
<td><p style="text-align: right">
|
181 |
+
3.4B</p>
|
182 |
+
|
183 |
+
</td>
|
184 |
+
<td><p style="text-align: right">
|
185 |
+
*6475.52h</p>
|
186 |
+
|
187 |
+
</td>
|
188 |
+
</tr>
|
189 |
+
</table>
|
190 |
+
|
191 |
+
|
192 |
+
* indicates the time for the entire training process (2000 steps), however the weights of the step 1680 are shared as it is the best checkpoint according to validation loss.
|
193 |
+
|
194 |
+
|
195 |
+
# **Evaluation**
|
196 |
+
|
197 |
+
We evaluated the models on zero-shot and few-shot settings on generative, multiple-choice and classification tasks. We used the basque partitions of each dataset.
|
198 |
+
|
199 |
+
|
200 |
+
## **Testing Data, Factors & Metrics**
|
201 |
+
|
202 |
+
|
203 |
+
### **Testing Data**
|
204 |
+
|
205 |
+
|
206 |
+
|
207 |
+
* **Belebele** ([Bandarkar et al.](https://arxiv.org/abs/2308.16884)): Belebele is a multiple-choice machine reading comprehension (MRC) dataset spanning 122 language variants. We evaluated the model in a 5-shot fashion.
|
208 |
+
* Data card: [https://huggingface.co/datasets/facebook/belebele](https://huggingface.co/datasets/facebook/belebele)
|
209 |
+
* **X-StoryCloze**: XStoryCloze consists of the professionally translated version of the English StoryCloze dataset to 10 non-English languages. Story Cloze is a new commonsense reasoning dataset which consists of choosing the correct ending to a four-sentence story. We evaluated the model in a 0-shot fashion.
|
210 |
+
* Data card: [https://huggingface.co/datasets/juletxara/xstory_cloze](https://huggingface.co/datasets/juletxara/xstory_cloze)
|
211 |
+
* **BasqueGLUE** ([Urbizu et al.](https://aclanthology.org/2022.lrec-1.172.pdf)): BasqueGLUE is a NLU benchmark for Basque. We evaluated the model in a 5-shot fashion on the following tasks:
|
212 |
+
* Data card:[ https://huggingface.co/datasets/orai-nlp/basqueGLUE](https://huggingface.co/datasets/orai-nlp/basqueGLUE).
|
213 |
+
* Tasks:
|
214 |
+
* **BEC2016eu**: Sentiment analysis on tweets about the 2016 Basque elections campaign.
|
215 |
+
* **VaxxStance**: Stance detection on tweets around the anti-vaccine movement.
|
216 |
+
* **BTHCv2**: Topic classification of news extracts with 12 categories.
|
217 |
+
* **EpecKorrefBin**: Correference detection task similar to WSC.
|
218 |
+
* **QNLIeu**: Q&A NLI built from the Basque Wikipedia.
|
219 |
+
* **WiCeu**: Basque Word-in-Context task.
|
220 |
+
|
221 |
+
|
222 |
+
### **Metrics**
|
223 |
+
|
224 |
+
|
225 |
+
|
226 |
+
* **Accuracy**: Belebele, X-StoryCloze, EpecKorrefBin, QNLI-eu, and, WiC-eu
|
227 |
+
* **Micro F1**: BEC2016-eu and BHTCv2
|
228 |
+
* **Macro F1**: VaxxStance (favor & against)
|
229 |
+
|
230 |
+
|
231 |
+
## **Results**
|
232 |
+
|
233 |
+
The model was evaluated using the LM Evaluation harness library from Eleuther AI. In order to reproduce our results please refer to our [fork](https://github.com/naiarapm/lm-evaluation-harness/tree/basqueglue) that includes the implementation for the mentioned datasets.
|
234 |
+
|
235 |
+
|
236 |
+
<table>
|
237 |
+
<tr>
|
238 |
+
<td><strong>Model</strong>
|
239 |
+
</td>
|
240 |
+
<td><strong>Belebele</strong>
|
241 |
+
</td>
|
242 |
+
<td><strong>X-StoryCloze</strong>
|
243 |
+
</td>
|
244 |
+
<td><strong>BEC</strong>
|
245 |
+
</td>
|
246 |
+
<td><strong>Vaxx</strong>
|
247 |
+
</td>
|
248 |
+
<td><strong>BHTC</strong>
|
249 |
+
</td>
|
250 |
+
<td><strong>coref</strong>
|
251 |
+
</td>
|
252 |
+
<td><strong>QNLI</strong>
|
253 |
+
</td>
|
254 |
+
<td><strong>WiC</strong>
|
255 |
+
</td>
|
256 |
+
<td><strong>Average</strong>
|
257 |
+
</td>
|
258 |
+
</tr>
|
259 |
+
<tr>
|
260 |
+
<td>Random
|
261 |
+
</td>
|
262 |
+
<td>25.00
|
263 |
+
</td>
|
264 |
+
<td>50.00
|
265 |
+
</td>
|
266 |
+
<td>33.33
|
267 |
+
</td>
|
268 |
+
<td>33.33
|
269 |
+
</td>
|
270 |
+
<td>8.33
|
271 |
+
</td>
|
272 |
+
<td>50.00
|
273 |
+
</td>
|
274 |
+
<td>50.00
|
275 |
+
</td>
|
276 |
+
<td>50.00
|
277 |
+
</td>
|
278 |
+
<td>37.50
|
279 |
+
</td>
|
280 |
+
</tr>
|
281 |
+
<tr>
|
282 |
+
<td>LLaMA 2 7B
|
283 |
+
</td>
|
284 |
+
<td>26.22
|
285 |
+
</td>
|
286 |
+
<td>50.43
|
287 |
+
</td>
|
288 |
+
<td>41.63
|
289 |
+
</td>
|
290 |
+
<td>18.60
|
291 |
+
</td>
|
292 |
+
<td>20.06
|
293 |
+
</td>
|
294 |
+
<td>50.94
|
295 |
+
</td>
|
296 |
+
<td>48.32
|
297 |
+
</td>
|
298 |
+
<td>49.64
|
299 |
+
</td>
|
300 |
+
<td>38.23
|
301 |
+
</td>
|
302 |
+
</tr>
|
303 |
+
<tr>
|
304 |
+
<td>LLaMA 2 13B
|
305 |
+
</td>
|
306 |
+
<td>32.00
|
307 |
+
</td>
|
308 |
+
<td>50.63
|
309 |
+
</td>
|
310 |
+
<td>41.09
|
311 |
+
</td>
|
312 |
+
<td>18.25
|
313 |
+
</td>
|
314 |
+
<td>27.35
|
315 |
+
</td>
|
316 |
+
<td>49.23
|
317 |
+
</td>
|
318 |
+
<td>48.74
|
319 |
+
</td>
|
320 |
+
<td>49.21
|
321 |
+
</td>
|
322 |
+
<td>39.56
|
323 |
+
</td>
|
324 |
+
</tr>
|
325 |
+
<tr>
|
326 |
+
<td>LLaMA 2 70B
|
327 |
+
</td>
|
328 |
+
<td>33.56
|
329 |
+
</td>
|
330 |
+
<td>51.62
|
331 |
+
</td>
|
332 |
+
<td>47.47
|
333 |
+
</td>
|
334 |
+
<td>21.01
|
335 |
+
</td>
|
336 |
+
<td>31.01
|
337 |
+
</td>
|
338 |
+
<td>52.98
|
339 |
+
</td>
|
340 |
+
<td>51.26
|
341 |
+
</td>
|
342 |
+
<td>51.57
|
343 |
+
</td>
|
344 |
+
<td>42.56
|
345 |
+
</td>
|
346 |
+
</tr>
|
347 |
+
<tr>
|
348 |
+
<td>BLOOM 7B
|
349 |
+
</td>
|
350 |
+
<td>27.00
|
351 |
+
</td>
|
352 |
+
<td>57.18
|
353 |
+
</td>
|
354 |
+
<td>37.94
|
355 |
+
</td>
|
356 |
+
<td>20.72
|
357 |
+
</td>
|
358 |
+
<td>39.10
|
359 |
+
</td>
|
360 |
+
<td>48.21
|
361 |
+
</td>
|
362 |
+
<td>47.48
|
363 |
+
</td>
|
364 |
+
<td>47.57
|
365 |
+
</td>
|
366 |
+
<td>40.65
|
367 |
+
</td>
|
368 |
+
</tr>
|
369 |
+
<tr>
|
370 |
+
<td>XGLM 7B
|
371 |
+
</td>
|
372 |
+
<td>23.88
|
373 |
+
</td>
|
374 |
+
<td>57.71
|
375 |
+
</td>
|
376 |
+
<td>39.94
|
377 |
+
</td>
|
378 |
+
<td>21.58
|
379 |
+
</td>
|
380 |
+
<td>36.73
|
381 |
+
</td>
|
382 |
+
<td>50.94
|
383 |
+
</td>
|
384 |
+
<td>50.42
|
385 |
+
</td>
|
386 |
+
<td>49.21
|
387 |
+
</td>
|
388 |
+
<td>41.30
|
389 |
+
</td>
|
390 |
+
</tr>
|
391 |
+
<tr>
|
392 |
+
<td><strong>Basque LLaMA 7B</strong>
|
393 |
+
</td>
|
394 |
+
<td>35.67
|
395 |
+
</td>
|
396 |
+
<td>63.13
|
397 |
+
</td>
|
398 |
+
<td>55.61
|
399 |
+
</td>
|
400 |
+
<td>45.93
|
401 |
+
</td>
|
402 |
+
<td>44.44
|
403 |
+
</td>
|
404 |
+
<td>50.43
|
405 |
+
</td>
|
406 |
+
<td>55.04
|
407 |
+
</td>
|
408 |
+
<td>50.14
|
409 |
+
</td>
|
410 |
+
<td>50.05
|
411 |
+
</td>
|
412 |
+
</tr>
|
413 |
+
<tr>
|
414 |
+
<td><strong>Basque LLaMA 13B</strong>
|
415 |
+
</td>
|
416 |
+
<td>53.56
|
417 |
+
</td>
|
418 |
+
<td>65.85
|
419 |
+
</td>
|
420 |
+
<td>53.23
|
421 |
+
</td>
|
422 |
+
<td>48.66
|
423 |
+
</td>
|
424 |
+
<td><strong>53.61</strong>
|
425 |
+
</td>
|
426 |
+
<td>62.52
|
427 |
+
</td>
|
428 |
+
<td>57.14
|
429 |
+
</td>
|
430 |
+
<td>54.21
|
431 |
+
</td>
|
432 |
+
<td>56.10
|
433 |
+
</td>
|
434 |
+
</tr>
|
435 |
+
<tr>
|
436 |
+
<td><strong>Basque LLaMA 70B</strong>
|
437 |
+
</td>
|
438 |
+
<td><strong>71.78</strong>
|
439 |
+
</td>
|
440 |
+
<td><strong>67.57</strong>
|
441 |
+
</td>
|
442 |
+
<td><strong>63.52</strong>
|
443 |
+
</td>
|
444 |
+
<td><strong>48.95</strong>
|
445 |
+
</td>
|
446 |
+
<td>49.51
|
447 |
+
</td>
|
448 |
+
<td><strong>79.90</strong>
|
449 |
+
</td>
|
450 |
+
<td><strong>58.82</strong>
|
451 |
+
</td>
|
452 |
+
<td><strong>55.50</strong>
|
453 |
+
</td>
|
454 |
+
<td><strong>61.94</strong>
|
455 |
+
</td>
|
456 |
+
</tr>
|
457 |
+
</table>
|
458 |
+
|
459 |
+
|
460 |
+
|
461 |
+
# **Environmental Impact**
|
462 |
+
|
463 |
+
Carbon emissions are estimated using the[ Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in[ Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
464 |
+
|
465 |
+
|
466 |
+
|
467 |
+
* **Hardware Type:** HPC Cluster, 4x A100 64Gb nodes
|
468 |
+
* **Hours used:** 359.2h + 468.8h + 6475.52h = 7303.52h
|
469 |
+
* **Compute cluster:** CINECA HPC
|
470 |
+
* **Compute Region:** Italy
|
471 |
+
* **Carbon Emitted:** 673.75kg CO<sub>2</sub> eq
|
472 |
+
|
473 |
+
|
474 |
+
# **Acknowledgements**
|
475 |
+
|
476 |
+
This work has been partially supported by the Basque Government (IKER-GAITU project). The models were trained on the Leonardo supercomputer at CINECA under the EuroHPC Joint Undertaking, project EHPC-EXT-2023E01-013.
|