--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy model-index: - name: violence-audio-Recognition-88822 results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9491701244813278 --- # violence-audio-Recognition-88822 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1980 - Accuracy: 0.9492 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4717 | 1.0 | 60 | 0.2778 | 0.8859 | | 0.2436 | 1.99 | 120 | 0.2150 | 0.9336 | | 0.1808 | 2.99 | 180 | 0.1529 | 0.9585 | | 0.1444 | 4.0 | 241 | 0.2275 | 0.9098 | | 0.098 | 5.0 | 301 | 0.1924 | 0.9471 | | 0.0752 | 5.99 | 361 | 0.1087 | 0.9720 | | 0.0646 | 6.99 | 421 | 0.1321 | 0.9699 | | 0.0762 | 8.0 | 482 | 0.1387 | 0.9627 | | 0.0464 | 9.0 | 542 | 0.1980 | 0.9492 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2