Hemg commited on
Commit
0eb35fe
1 Parent(s): 50c4a69

Model save

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/wav2vec2-base
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - audiofolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: deeepfake-audio-Recognition-ttoo
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: audiofolder
18
+ type: audiofolder
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.8484848484848485
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # deeepfake-audio-Recognition-ttoo
32
+
33
+ This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.4021
36
+ - Accuracy: 0.8485
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 3e-05
56
+ - train_batch_size: 8
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_ratio: 0.01
62
+ - num_epochs: 4
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 0.6598 | 1.0 | 33 | 0.6142 | 0.6515 |
69
+ | 0.5134 | 2.0 | 66 | 0.5394 | 0.7273 |
70
+ | 0.3837 | 3.0 | 99 | 0.5137 | 0.7879 |
71
+ | 0.3438 | 4.0 | 132 | 0.4021 | 0.8485 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.39.2
77
+ - Pytorch 2.2.1+cu121
78
+ - Datasets 2.18.0
79
+ - Tokenizers 0.15.2