--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy model-index: - name: dangerous-heartbeat-detection results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: train[:90] args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- # dangerous-heartbeat-detection This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2805 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.5 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8144 | 0.89 | 2 | 1.4061 | 1.0 | | 1.2223 | 1.78 | 4 | 0.6946 | 1.0 | | 0.5897 | 2.67 | 6 | 0.3691 | 1.0 | | 0.2163 | 3.56 | 8 | 0.2805 | 1.0 | ### Framework versions - Transformers 4.39.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2