File size: 6,614 Bytes
cfb3545 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
---
language:
- en
- ro
tags:
- translation
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-en-ro
results:
- task:
name: Translation eng-ron
type: translation
args: eng-ron
dataset:
name: flores101-devtest
type: flores_101
args: eng ron devtest
metrics:
- name: BLEU
type: bleu
value: 40.4
- task:
name: Translation eng-ron
type: translation
args: eng-ron
dataset:
name: newsdev2016
type: newsdev2016
args: eng-ron
metrics:
- name: BLEU
type: bleu
value: 36.4
- task:
name: Translation eng-ron
type: translation
args: eng-ron
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-ron
metrics:
- name: BLEU
type: bleu
value: 48.6
- task:
name: Translation eng-ron
type: translation
args: eng-ron
dataset:
name: newstest2016
type: wmt-2016-news
args: eng-ron
metrics:
- name: BLEU
type: bleu
value: 34.0
---
# opus-mt-tc-big-en-ro
Neural machine translation model for translating from English (en) to Romanian (ro).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Model info
* Release: 2022-02-25
* source language(s): eng
* target language(s): ron
* model: transformer-big
* data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opusTCv20210807+bt_transformer-big_2022-02-25.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-ron/opusTCv20210807+bt_transformer-big_2022-02-25.zip)
* more information released models: [OPUS-MT eng-ron README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-ron/README.md)
## Usage
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
">>ron<< A bad writer's prose is full of hackneyed phrases.",
">>ron<< Zero is a special number."
]
model_name = "pytorch-models/opus-mt-tc-big-en-ro"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# Proza unui scriitor prost este plină de fraze tocite.
# Zero este un număr special.
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-ro")
print(pipe(">>ron<< A bad writer's prose is full of hackneyed phrases."))
# expected output: Proza unui scriitor prost este plină de fraze tocite.
```
## Benchmarks
* test set translations: [opusTCv20210807+bt_transformer-big_2022-02-25.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-ron/opusTCv20210807+bt_transformer-big_2022-02-25.test.txt)
* test set scores: [opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-ron/opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| eng-ron | tatoeba-test-v2021-08-07 | 0.68606 | 48.6 | 5508 | 40367 |
| eng-ron | flores101-devtest | 0.64876 | 40.4 | 1012 | 26799 |
| eng-ron | newsdev2016 | 0.62682 | 36.4 | 1999 | 51300 |
| eng-ron | newstest2016 | 0.60702 | 34.0 | 1999 | 48945 |
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: 3405783
* port time: Wed Apr 13 17:55:46 EEST 2022
* port machine: LM0-400-22516.local
|