File size: 8,889 Bytes
c6a5899 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
---
library_name: transformers
language:
- anp
- as
- awa
- bho
- bn
- bpy
- dv
- en
- gbm
- gu
- hi
- hif
- hne
- hns
- kok
- ks
- lah
- mag
- mai
- mr
- ne
- or
- pa
- pi
- rhg
- rmy
- rom
- sa
- sd
- si
- skr
- syl
- ur
tags:
- translation
- opus-mt-tc-bible
license: apache-2.0
model-index:
- name: opus-mt-tc-bible-big-inc-en
results:
- task:
name: Translation multi-eng
type: translation
args: multi-eng
dataset:
name: tatoeba-test-v2020-07-28-v2023-09-26
type: tatoeba_mt
args: multi-eng
metrics:
- name: BLEU
type: bleu
value: 44.3
- name: chr-F
type: chrf
value: 0.61252
---
# opus-mt-tc-bible-big-inc-en
## Table of Contents
- [Model Details](#model-details)
- [Uses](#uses)
- [Risks, Limitations and Biases](#risks-limitations-and-biases)
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
- [Training](#training)
- [Evaluation](#evaluation)
- [Citation Information](#citation-information)
- [Acknowledgements](#acknowledgements)
## Model Details
Neural machine translation model for translating from Indic languages (inc) to English (en).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
**Model Description:**
- **Developed by:** Language Technology Research Group at the University of Helsinki
- **Model Type:** Translation (transformer-big)
- **Release**: 2024-08-17
- **License:** Apache-2.0
- **Language(s):**
- Source Language(s): anp asm awa ben bho bpy div dty gbm guj hif hin hne hns kas kok lah mag mai mar nep npi ori pan pli rhg rmy rom san sin skr snd syl urd
- Target Language(s): eng
- **Original Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/inc-eng/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.zip)
- **Resources for more information:**
- [OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/inc-eng/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-08-17)
- [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
- [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian)
- [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/)
- [HPLT bilingual data v1 (as part of the Tatoeba Translation Challenge dataset)](https://hplt-project.org/datasets/v1)
- [A massively parallel Bible corpus](https://aclanthology.org/L14-1215/)
## Uses
This model can be used for translation and text-to-text generation.
## Risks, Limitations and Biases
**CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.**
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
## How to Get Started With the Model
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
"हमें केवल सम्पूर्ण वाक्य चाहिएं।",
"टॉम ने मुझे बताया नहीं।"
]
model_name = "pytorch-models/opus-mt-tc-bible-big-inc-en"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# We just need the whole sentence.
# Tom didn't tell me.
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-bible-big-inc-en")
print(pipe("हमें केवल सम्पूर्ण वाक्य चाहिएं।"))
# expected output: We just need the whole sentence.
```
## Training
- **Data**: opusTCv20230926max50+bt+jhubc ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
- **Pre-processing**: SentencePiece (spm32k,spm32k)
- **Model Type:** transformer-big
- **Original MarianNMT Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/inc-eng/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.zip)
- **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
## Evaluation
* [Model scores at the OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/inc-eng/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-08-17)
* test set translations: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/inc-eng/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.test.txt)
* test set scores: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/inc-eng/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| multi-eng | tatoeba-test-v2020-07-28-v2023-09-26 | 0.61252 | 44.3 | 10000 | 64786 |
## Citation Information
* Publications: [Democratizing neural machine translation with OPUS-MT](https://doi.org/10.1007/s10579-023-09704-w) and [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```bibtex
@article{tiedemann2023democratizing,
title={Democratizing neural machine translation with {OPUS-MT}},
author={Tiedemann, J{\"o}rg and Aulamo, Mikko and Bakshandaeva, Daria and Boggia, Michele and Gr{\"o}nroos, Stig-Arne and Nieminen, Tommi and Raganato, Alessandro and Scherrer, Yves and Vazquez, Raul and Virpioja, Sami},
journal={Language Resources and Evaluation},
number={58},
pages={713--755},
year={2023},
publisher={Springer Nature},
issn={1574-0218},
doi={10.1007/s10579-023-09704-w}
}
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Acknowledgements
The work is supported by the [HPLT project](https://hplt-project.org/), funded by the European Union’s Horizon Europe research and innovation programme under grant agreement No 101070350. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland, and the [EuroHPC supercomputer LUMI](https://www.lumi-supercomputer.eu/).
## Model conversion info
* transformers version: 4.45.1
* OPUS-MT git hash: 0882077
* port time: Tue Oct 8 11:46:05 EEST 2024
* port machine: LM0-400-22516.local
|