tiedeman commited on
Commit
3a391e7
1 Parent(s): 5c5aba2

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.spm filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - tr
4
+ - uk
5
+
6
+ tags:
7
+ - translation
8
+
9
+ license: cc-by-4.0
10
+ model-index:
11
+ - name: opus-mt-tc-base-tr-uk
12
+ results:
13
+ - task:
14
+ name: Translation tur-ukr
15
+ type: translation
16
+ args: tur-ukr
17
+ dataset:
18
+ name: tatoeba-test-v2021-08-07
19
+ type: tatoeba_mt
20
+ args: tur-ukr
21
+ metrics:
22
+ - name: BLEU
23
+ type: bleu
24
+ value: 40.5
25
+ ---
26
+ # opus-mt-tc-base-tr-uk
27
+
28
+ Neural machine translation model for translating from Turkish (tr) to Ukrainian (uk).
29
+
30
+ This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
31
+
32
+ * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
33
+
34
+ ```
35
+ @inproceedings{tiedemann-thottingal-2020-opus,
36
+ title = "{OPUS}-{MT} {--} Building open translation services for the World",
37
+ author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
38
+ booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
39
+ month = nov,
40
+ year = "2020",
41
+ address = "Lisboa, Portugal",
42
+ publisher = "European Association for Machine Translation",
43
+ url = "https://aclanthology.org/2020.eamt-1.61",
44
+ pages = "479--480",
45
+ }
46
+
47
+ @inproceedings{tiedemann-2020-tatoeba,
48
+ title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
49
+ author = {Tiedemann, J{\"o}rg},
50
+ booktitle = "Proceedings of the Fifth Conference on Machine Translation",
51
+ month = nov,
52
+ year = "2020",
53
+ address = "Online",
54
+ publisher = "Association for Computational Linguistics",
55
+ url = "https://aclanthology.org/2020.wmt-1.139",
56
+ pages = "1174--1182",
57
+ }
58
+ ```
59
+
60
+ ## Model info
61
+
62
+ * Release: 2022-03-07
63
+ * source language(s):
64
+ * target language(s): ukr
65
+ * model: transformer-align
66
+ * data: opusTCv20210807+pbt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
67
+ * tokenization: SentencePiece (spm32k,spm32k)
68
+ * original model: [opusTCv20210807+pbt_transformer-align_2022-03-07.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/tur-ukr/opusTCv20210807+pbt_transformer-align_2022-03-07.zip)
69
+ * more information released models: [OPUS-MT tur-ukr README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/tur-ukr/README.md)
70
+
71
+ ## Usage
72
+
73
+ A short example code:
74
+
75
+ ```python
76
+ from transformers import MarianMTModel, MarianTokenizer
77
+
78
+ src_text = [
79
+ "1000 yen yeterli mi?",
80
+ "Zürih, İsviçre'de bir şehirdir."
81
+ ]
82
+
83
+ model_name = "pytorch-models/opus-mt-tc-base-tr-uk"
84
+ tokenizer = MarianTokenizer.from_pretrained(model_name)
85
+ model = MarianMTModel.from_pretrained(model_name)
86
+ translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
87
+
88
+ for t in translated:
89
+ print( tokenizer.decode(t, skip_special_tokens=True) )
90
+
91
+ # expected output:
92
+ # Чи достатньо 1000 ієн?
93
+ # Цюрих - місто в Швейцарії.
94
+ ```
95
+
96
+ You can also use OPUS-MT models with the transformers pipelines, for example:
97
+
98
+ ```python
99
+ from transformers import pipeline
100
+ pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-base-tr-uk")
101
+ print(pipe("1000 yen yeterli mi?"))
102
+
103
+ # expected output: Чи достатньо 1000 ієн?
104
+ ```
105
+
106
+ ## Benchmarks
107
+
108
+ * test set translations: [opusTCv20210807+pbt_transformer-align_2022-03-07.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/tur-ukr/opusTCv20210807+pbt_transformer-align_2022-03-07.test.txt)
109
+ * test set scores: [opusTCv20210807+pbt_transformer-align_2022-03-07.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/tur-ukr/opusTCv20210807+pbt_transformer-align_2022-03-07.eval.txt)
110
+ * benchmark results: [benchmark_results.txt](benchmark_results.txt)
111
+ * benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
112
+
113
+ | langpair | testset | chr-F | BLEU | #sent | #words |
114
+ |----------|---------|-------|-------|-------|--------|
115
+ | tur-ukr | tatoeba-test-v2021-08-07 | 0.63573 | 40.5 | 2520 | 13079 |
116
+ | tur-ukr | flores101-devtest | 0.49944 | 19.9 | 1012 | 22810 |
117
+
118
+ ## Acknowledgements
119
+
120
+ The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
121
+
122
+ ## Model conversion info
123
+
124
+ * transformers version: 4.16.2
125
+ * OPUS-MT git hash: 1bdabf7
126
+ * port time: Thu Mar 24 03:37:19 EET 2022
127
+ * port machine: LM0-400-22516.local
benchmark_results.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ tur-ukr flores101-devtest 0.49944 19.9 1012 22810
2
+ tur-ukr flores101-dev 0.49630 20.1 997 21841
3
+ tur-ukr tatoeba-test-v2020-07-28 0.63600 40.6 2500 12988
4
+ tur-ukr tatoeba-test-v2021-03-30 0.63616 40.6 4972 25856
5
+ tur-ukr tatoeba-test-v2021-08-07 0.63573 40.5 2520 13079
benchmark_translations.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c73a297d64474a7cf1af3c9dda59185e199da0cfd9c1e3814caccedc5d0b604
3
+ size 721402
config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_dropout": 0.0,
3
+ "activation_function": "swish",
4
+ "architectures": [
5
+ "MarianMTModel"
6
+ ],
7
+ "attention_dropout": 0.0,
8
+ "bad_words_ids": [
9
+ [
10
+ 60659
11
+ ]
12
+ ],
13
+ "bos_token_id": 0,
14
+ "classifier_dropout": 0.0,
15
+ "d_model": 512,
16
+ "decoder_attention_heads": 8,
17
+ "decoder_ffn_dim": 2048,
18
+ "decoder_layerdrop": 0.0,
19
+ "decoder_layers": 6,
20
+ "decoder_start_token_id": 60659,
21
+ "decoder_vocab_size": 60660,
22
+ "dropout": 0.1,
23
+ "encoder_attention_heads": 8,
24
+ "encoder_ffn_dim": 2048,
25
+ "encoder_layerdrop": 0.0,
26
+ "encoder_layers": 6,
27
+ "eos_token_id": 24227,
28
+ "forced_eos_token_id": 24227,
29
+ "init_std": 0.02,
30
+ "is_encoder_decoder": true,
31
+ "max_length": 512,
32
+ "max_position_embeddings": 512,
33
+ "model_type": "marian",
34
+ "normalize_embedding": false,
35
+ "num_beams": 4,
36
+ "num_hidden_layers": 6,
37
+ "pad_token_id": 60659,
38
+ "scale_embedding": true,
39
+ "share_encoder_decoder_embeddings": true,
40
+ "static_position_embeddings": true,
41
+ "torch_dtype": "float16",
42
+ "transformers_version": "4.18.0.dev0",
43
+ "use_cache": true,
44
+ "vocab_size": 60660
45
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec51f5f49e00f34e3fae8af799fad213ef1a52a2fde5793bbbe7610a52496117
3
+ size 212721667
source.spm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d1a616090c45d10a4b1dd1fe8f87a08348e3595af1f950d856a2e0178f79a1f
3
+ size 834916
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
target.spm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99ca4b13904a2ef9cc1402db08c0b1f18e65212fc8690587f8858ceb7055e535
3
+ size 1005337
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"source_lang": "tr", "target_lang": "uk", "unk_token": "<unk>", "eos_token": "</s>", "pad_token": "<pad>", "model_max_length": 512, "sp_model_kwargs": {}, "separate_vocabs": false, "special_tokens_map_file": null, "name_or_path": "marian-models/opusTCv20210807+pbt_transformer-align_2022-03-07/tr-uk", "tokenizer_class": "MarianTokenizer"}
vocab.json ADDED
The diff for this file is too large to render. See raw diff