End of training
Browse files- README.md +88 -196
- config.json +80 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,199 +1,91 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
##
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: other
|
3 |
+
base_model: nvidia/mit-b5
|
4 |
+
tags:
|
5 |
+
- vision
|
6 |
+
- image-segmentation
|
7 |
+
- generated_from_trainer
|
8 |
+
model-index:
|
9 |
+
- name: SegFormer_Mixed_Set2_788images_mit-b5_RGB
|
10 |
+
results: []
|
11 |
---
|
12 |
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# SegFormer_Mixed_Set2_788images_mit-b5_RGB
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the Hasano20/Mixed_Set2_788images dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.0179
|
21 |
+
- Mean Iou: 0.9757
|
22 |
+
- Mean Accuracy: 0.9872
|
23 |
+
- Overall Accuracy: 0.9938
|
24 |
+
- Accuracy Background: 0.9959
|
25 |
+
- Accuracy Melt: 0.9697
|
26 |
+
- Accuracy Substrate: 0.9959
|
27 |
+
- Iou Background: 0.9922
|
28 |
+
- Iou Melt: 0.9437
|
29 |
+
- Iou Substrate: 0.9911
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 0.0001
|
49 |
+
- train_batch_size: 8
|
50 |
+
- eval_batch_size: 8
|
51 |
+
- seed: 42
|
52 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
+
- lr_scheduler_type: cosine
|
54 |
+
- lr_scheduler_warmup_steps: 100
|
55 |
+
- num_epochs: 50
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Melt | Accuracy Substrate | Iou Background | Iou Melt | Iou Substrate |
|
60 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:------------------:|:--------------:|:--------:|:-------------:|
|
61 |
+
| 0.1292 | 0.7042 | 50 | 0.1861 | 0.7698 | 0.8223 | 0.9387 | 0.9844 | 0.5153 | 0.9673 | 0.9318 | 0.4625 | 0.9152 |
|
62 |
+
| 0.1161 | 1.4085 | 100 | 0.1307 | 0.8463 | 0.9335 | 0.9543 | 0.9851 | 0.8721 | 0.9433 | 0.9596 | 0.6514 | 0.9279 |
|
63 |
+
| 0.072 | 2.1127 | 150 | 0.0675 | 0.9075 | 0.9607 | 0.9762 | 0.9887 | 0.9179 | 0.9755 | 0.9821 | 0.7779 | 0.9625 |
|
64 |
+
| 0.0425 | 2.8169 | 200 | 0.0622 | 0.9078 | 0.9322 | 0.9781 | 0.9868 | 0.8138 | 0.9959 | 0.9838 | 0.7746 | 0.9652 |
|
65 |
+
| 0.0214 | 3.5211 | 250 | 0.0372 | 0.9458 | 0.9688 | 0.9868 | 0.9905 | 0.9223 | 0.9935 | 0.9870 | 0.8702 | 0.9802 |
|
66 |
+
| 0.0397 | 4.2254 | 300 | 0.0373 | 0.9428 | 0.9802 | 0.9858 | 0.9948 | 0.9635 | 0.9824 | 0.9892 | 0.8617 | 0.9774 |
|
67 |
+
| 0.0515 | 4.9296 | 350 | 0.0411 | 0.9399 | 0.9735 | 0.9846 | 0.9902 | 0.9438 | 0.9864 | 0.9865 | 0.8583 | 0.9750 |
|
68 |
+
| 0.0171 | 5.6338 | 400 | 0.0267 | 0.9587 | 0.9782 | 0.9898 | 0.9937 | 0.9477 | 0.9931 | 0.9900 | 0.9017 | 0.9843 |
|
69 |
+
| 0.0274 | 6.3380 | 450 | 0.0262 | 0.9621 | 0.9780 | 0.9906 | 0.9935 | 0.9454 | 0.9951 | 0.9900 | 0.9107 | 0.9857 |
|
70 |
+
| 0.0105 | 7.0423 | 500 | 0.0272 | 0.9597 | 0.9844 | 0.9900 | 0.9924 | 0.9695 | 0.9913 | 0.9898 | 0.9041 | 0.9852 |
|
71 |
+
| 0.0143 | 7.7465 | 550 | 0.0250 | 0.9638 | 0.9824 | 0.9911 | 0.9946 | 0.9593 | 0.9931 | 0.9907 | 0.9142 | 0.9865 |
|
72 |
+
| 0.0153 | 8.4507 | 600 | 0.0226 | 0.9670 | 0.9826 | 0.9918 | 0.9947 | 0.9585 | 0.9946 | 0.9909 | 0.9223 | 0.9878 |
|
73 |
+
| 0.011 | 9.1549 | 650 | 0.0201 | 0.9711 | 0.9841 | 0.9926 | 0.9936 | 0.9622 | 0.9965 | 0.9908 | 0.9330 | 0.9893 |
|
74 |
+
| 0.009 | 9.8592 | 700 | 0.0199 | 0.9707 | 0.9858 | 0.9926 | 0.9962 | 0.9676 | 0.9936 | 0.9913 | 0.9315 | 0.9891 |
|
75 |
+
| 0.017 | 10.5634 | 750 | 0.0206 | 0.9692 | 0.9869 | 0.9923 | 0.9964 | 0.9723 | 0.9921 | 0.9911 | 0.9279 | 0.9886 |
|
76 |
+
| 0.0095 | 11.2676 | 800 | 0.0184 | 0.9733 | 0.9870 | 0.9933 | 0.9954 | 0.9704 | 0.9950 | 0.9917 | 0.9379 | 0.9902 |
|
77 |
+
| 0.0142 | 11.9718 | 850 | 0.0179 | 0.9740 | 0.9862 | 0.9935 | 0.9957 | 0.9671 | 0.9957 | 0.9919 | 0.9395 | 0.9905 |
|
78 |
+
| 0.0134 | 12.6761 | 900 | 0.0180 | 0.9739 | 0.9882 | 0.9934 | 0.9948 | 0.9747 | 0.9951 | 0.9919 | 0.9394 | 0.9903 |
|
79 |
+
| 0.0096 | 13.3803 | 950 | 0.0179 | 0.9744 | 0.9864 | 0.9936 | 0.9960 | 0.9675 | 0.9956 | 0.9922 | 0.9406 | 0.9905 |
|
80 |
+
| 0.0089 | 14.0845 | 1000 | 0.0174 | 0.9744 | 0.9881 | 0.9936 | 0.9958 | 0.9737 | 0.9949 | 0.9922 | 0.9404 | 0.9908 |
|
81 |
+
| 0.0094 | 14.7887 | 1050 | 0.0174 | 0.9754 | 0.9864 | 0.9938 | 0.9962 | 0.9671 | 0.9960 | 0.9924 | 0.9428 | 0.9911 |
|
82 |
+
| 0.0089 | 15.4930 | 1100 | 0.0192 | 0.9748 | 0.9860 | 0.9935 | 0.9945 | 0.9666 | 0.9968 | 0.9918 | 0.9421 | 0.9905 |
|
83 |
+
| 0.0087 | 16.1972 | 1150 | 0.0179 | 0.9757 | 0.9872 | 0.9938 | 0.9959 | 0.9697 | 0.9959 | 0.9922 | 0.9437 | 0.9911 |
|
84 |
+
|
85 |
+
|
86 |
+
### Framework versions
|
87 |
+
|
88 |
+
- Transformers 4.41.2
|
89 |
+
- Pytorch 2.0.1+cu117
|
90 |
+
- Datasets 2.19.2
|
91 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nvidia/mit-b5",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 768,
|
9 |
+
"depths": [
|
10 |
+
3,
|
11 |
+
6,
|
12 |
+
40,
|
13 |
+
3
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
64,
|
26 |
+
128,
|
27 |
+
320,
|
28 |
+
512
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "background",
|
32 |
+
"1": "melt",
|
33 |
+
"2": "substrate"
|
34 |
+
},
|
35 |
+
"image_size": 224,
|
36 |
+
"initializer_range": 0.02,
|
37 |
+
"label2id": {
|
38 |
+
"background": 0,
|
39 |
+
"melt": 1,
|
40 |
+
"substrate": 2
|
41 |
+
},
|
42 |
+
"layer_norm_eps": 1e-06,
|
43 |
+
"mlp_ratios": [
|
44 |
+
4,
|
45 |
+
4,
|
46 |
+
4,
|
47 |
+
4
|
48 |
+
],
|
49 |
+
"model_type": "segformer",
|
50 |
+
"num_attention_heads": [
|
51 |
+
1,
|
52 |
+
2,
|
53 |
+
5,
|
54 |
+
8
|
55 |
+
],
|
56 |
+
"num_channels": 3,
|
57 |
+
"num_encoder_blocks": 4,
|
58 |
+
"patch_sizes": [
|
59 |
+
7,
|
60 |
+
3,
|
61 |
+
3,
|
62 |
+
3
|
63 |
+
],
|
64 |
+
"reshape_last_stage": true,
|
65 |
+
"semantic_loss_ignore_index": 255,
|
66 |
+
"sr_ratios": [
|
67 |
+
8,
|
68 |
+
4,
|
69 |
+
2,
|
70 |
+
1
|
71 |
+
],
|
72 |
+
"strides": [
|
73 |
+
4,
|
74 |
+
2,
|
75 |
+
2,
|
76 |
+
2
|
77 |
+
],
|
78 |
+
"torch_dtype": "float32",
|
79 |
+
"transformers_version": "4.41.2"
|
80 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8678775c6364fe053b1d557221d4f50c383163c80fcab64134ca96ed1666ef2c
|
3 |
+
size 338531516
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:049bc4f1910f636e3c7f26abeeeea1428b6e0ad04469dbffa73f490423679590
|
3 |
+
size 4667
|