End of training
Browse files- README.md +54 -0
- generation_config.json +6 -0
- model.safetensors +1 -1
- modeling_bit_llama.py +169 -0
README.md
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: myBit-Llama2-jp-127M-test-24
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# myBit-Llama2-jp-127M-test-24
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- eval_loss: 3.1684
|
17 |
+
- eval_runtime: 327.4267
|
18 |
+
- eval_samples_per_second: 653.725
|
19 |
+
- eval_steps_per_second: 6.811
|
20 |
+
- epoch: 0.39
|
21 |
+
- step: 16000
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0024
|
41 |
+
- train_batch_size: 96
|
42 |
+
- eval_batch_size: 96
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- lr_scheduler_warmup_steps: 5000
|
47 |
+
- num_epochs: 1
|
48 |
+
|
49 |
+
### Framework versions
|
50 |
+
|
51 |
+
- Transformers 4.38.2
|
52 |
+
- Pytorch 2.2.1+cu121
|
53 |
+
- Datasets 2.18.0
|
54 |
+
- Tokenizers 0.15.2
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.38.2"
|
6 |
+
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 510960712
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a4374c18e3f97028f5acd1557d2e4dde19c6f61c5568fa6da518f07b03cb400
|
3 |
size 510960712
|
modeling_bit_llama.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
from typing import Optional, Tuple
|
3 |
+
from transformers.models.llama.modeling_llama import (
|
4 |
+
LlamaConfig,
|
5 |
+
LlamaModel,
|
6 |
+
LlamaForCausalLM,
|
7 |
+
LlamaAttention,
|
8 |
+
LlamaFlashAttention2,
|
9 |
+
LlamaSdpaAttention,
|
10 |
+
LlamaMLP,
|
11 |
+
LlamaDecoderLayer,
|
12 |
+
)
|
13 |
+
from mybitnet.bitnet import BitLinear, BitLinear158b
|
14 |
+
import torch
|
15 |
+
from torch import nn
|
16 |
+
|
17 |
+
class BitLlamaConfig(LlamaConfig):
|
18 |
+
model_type = "bit_llama"
|
19 |
+
|
20 |
+
def __init__(self, bitnet_type="1.58b", bits=8, **kwargs):
|
21 |
+
super().__init__(**kwargs)
|
22 |
+
self.bitnet_type = bitnet_type
|
23 |
+
if self.bitnet_type not in ["1.58b", "1b"]:
|
24 |
+
raise ValueError("bitnet_type must be either '1.58b' or '1b'.")
|
25 |
+
self.bits = bits
|
26 |
+
|
27 |
+
|
28 |
+
class BitLlamaMLP(LlamaMLP):
|
29 |
+
def __init__(self, config):
|
30 |
+
super().__init__(config)
|
31 |
+
if config.bitnet_type=="1b":
|
32 |
+
self.gate_proj = BitLinear(self.hidden_size, self.intermediate_size, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=False)
|
33 |
+
self.up_proj = BitLinear(self.hidden_size, self.intermediate_size, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
|
34 |
+
self.down_proj = BitLinear(self.intermediate_size, self.hidden_size, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
|
35 |
+
elif config.bitnet_type=="1.58b":
|
36 |
+
self.gate_proj = BitLinear158b(self.hidden_size, self.intermediate_size, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits)
|
37 |
+
self.up_proj = BitLinear158b(self.hidden_size, self.intermediate_size, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits)
|
38 |
+
self.down_proj = BitLinear158b(self.intermediate_size, self.hidden_size, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits)
|
39 |
+
else:
|
40 |
+
raise ValueError("bitnet_type must be either '1.58b' or '1b'.")
|
41 |
+
|
42 |
+
class BitLlamaAttention(LlamaAttention):
|
43 |
+
def __init__(self, config: BitLlamaConfig, layer_idx: Optional[int] = None):
|
44 |
+
super().__init__(config)
|
45 |
+
if config.bitnet_type=="1b":
|
46 |
+
self.q_proj = BitLinear(self.hidden_size, self.num_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
|
47 |
+
self.k_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
|
48 |
+
self.v_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
|
49 |
+
self.o_proj = BitLinear(self.hidden_size, self.hidden_size, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
|
50 |
+
elif config.bitnet_type=="1.58b":
|
51 |
+
self.q_proj = BitLinear158b(self.hidden_size, self.num_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits)
|
52 |
+
self.k_proj = BitLinear158b(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits)
|
53 |
+
self.v_proj = BitLinear158b(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits)
|
54 |
+
self.o_proj = BitLinear158b(self.hidden_size, self.hidden_size, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits)
|
55 |
+
else:
|
56 |
+
raise ValueError("bitnet_type must be either '1.58b' or '1b'.")
|
57 |
+
|
58 |
+
class BitLlamaFlashAttention2(LlamaFlashAttention2):
|
59 |
+
def __init__(self, config: BitLlamaConfig, layer_idx: Optional[int] = None):
|
60 |
+
super().__init__(config, layer_idx)
|
61 |
+
if config.bitnet_type=="1b":
|
62 |
+
self.q_proj = BitLinear(self.hidden_size, self.num_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
|
63 |
+
self.k_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
|
64 |
+
self.v_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
|
65 |
+
self.o_proj = BitLinear(self.hidden_size, self.hidden_size, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
|
66 |
+
elif config.bitnet_type=="1.58b":
|
67 |
+
self.q_proj = BitLinear158b(self.hidden_size, self.num_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits)
|
68 |
+
self.k_proj = BitLinear158b(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits)
|
69 |
+
self.v_proj = BitLinear158b(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits)
|
70 |
+
self.o_proj = BitLinear158b(self.hidden_size, self.hidden_size, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits)
|
71 |
+
else:
|
72 |
+
raise ValueError("bitnet_type must be either '1.58b' or '1b'.")
|
73 |
+
|
74 |
+
class BitLlamaSdpaAttention(LlamaSdpaAttention):
|
75 |
+
def __init__(self, config: BitLlamaConfig, layer_idx: Optional[int] = None):
|
76 |
+
super().__init__(config, layer_idx)
|
77 |
+
if config.bitnet_type=="1b":
|
78 |
+
self.q_proj = BitLinear(self.hidden_size, self.num_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
|
79 |
+
self.k_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
|
80 |
+
self.v_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
|
81 |
+
self.o_proj = BitLinear(self.hidden_size, self.hidden_size, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
|
82 |
+
elif config.bitnet_type=="1.58b":
|
83 |
+
self.q_proj = BitLinear158b(self.hidden_size, self.num_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits)
|
84 |
+
self.k_proj = BitLinear158b(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits)
|
85 |
+
self.v_proj = BitLinear158b(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits)
|
86 |
+
self.o_proj = BitLinear158b(self.hidden_size, self.hidden_size, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits)
|
87 |
+
else:
|
88 |
+
raise ValueError("bitnet_type must be either '1.58b' or '1b'.")
|
89 |
+
|
90 |
+
BITLLAMA_ATTENTION_CLASSES = {
|
91 |
+
"eager": BitLlamaAttention,
|
92 |
+
"flash_attention_2": BitLlamaFlashAttention2,
|
93 |
+
"sdpa": BitLlamaSdpaAttention,
|
94 |
+
}
|
95 |
+
|
96 |
+
class BitLlamaDecoderLayer(LlamaDecoderLayer):
|
97 |
+
def __init__(self, config: BitLlamaConfig, layer_idx: int):
|
98 |
+
super().__init__(config, layer_idx)
|
99 |
+
self.self_attn = BITLLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
100 |
+
self.mlp = BitLlamaMLP(config)
|
101 |
+
del self.input_layernorm
|
102 |
+
del self.post_attention_layernorm
|
103 |
+
|
104 |
+
def forward(
|
105 |
+
self,
|
106 |
+
hidden_states: torch.Tensor,
|
107 |
+
attention_mask: Optional[torch.Tensor] = None,
|
108 |
+
position_ids: Optional[torch.LongTensor] = None,
|
109 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
110 |
+
output_attentions: Optional[bool] = False,
|
111 |
+
use_cache: Optional[bool] = False,
|
112 |
+
cache_position: Optional[torch.LongTensor] = None,
|
113 |
+
**kwargs,
|
114 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
115 |
+
"""
|
116 |
+
refers: https://github.com/huggingface/transformers/blob/c5f0288bc7d76f65996586f79f69fba8867a0e67/src/transformers/models/llama/modeling_llama.py#L693
|
117 |
+
"""
|
118 |
+
if "padding_mask" in kwargs:
|
119 |
+
warnings.warn(
|
120 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
121 |
+
)
|
122 |
+
|
123 |
+
residual = hidden_states
|
124 |
+
|
125 |
+
# Self Attention
|
126 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
127 |
+
hidden_states=hidden_states,
|
128 |
+
attention_mask=attention_mask,
|
129 |
+
position_ids=position_ids,
|
130 |
+
past_key_value=past_key_value,
|
131 |
+
output_attentions=output_attentions,
|
132 |
+
use_cache=use_cache,
|
133 |
+
cache_position=cache_position,
|
134 |
+
**kwargs,
|
135 |
+
)
|
136 |
+
hidden_states = residual + hidden_states
|
137 |
+
|
138 |
+
# Fully Connected
|
139 |
+
residual = hidden_states
|
140 |
+
hidden_states = self.mlp(hidden_states)
|
141 |
+
hidden_states = residual + hidden_states
|
142 |
+
|
143 |
+
outputs = (hidden_states,)
|
144 |
+
|
145 |
+
if output_attentions:
|
146 |
+
outputs += (self_attn_weights,)
|
147 |
+
|
148 |
+
if use_cache:
|
149 |
+
outputs += (present_key_value,)
|
150 |
+
|
151 |
+
return outputs
|
152 |
+
|
153 |
+
class BitLlamaModel(LlamaModel):
|
154 |
+
config_class = BitLlamaConfig
|
155 |
+
|
156 |
+
def __init__(self, config: BitLlamaConfig):
|
157 |
+
super().__init__(config)
|
158 |
+
self.layers = nn.ModuleList(
|
159 |
+
[BitLlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
160 |
+
)
|
161 |
+
|
162 |
+
class BitLlamaForCausalLM(LlamaForCausalLM):
|
163 |
+
config_class = BitLlamaConfig
|
164 |
+
|
165 |
+
def __init__(self, config: BitLlamaConfig):
|
166 |
+
super().__init__(config)
|
167 |
+
self.model = BitLlamaModel(config)
|
168 |
+
self.lm_head = BitLinear(config.hidden_size, config.vocab_size, bias=False, bits=config.bits, flg_before_linear=True)
|
169 |
+
|