|
--- |
|
base_model: HachiML/Mists-7B-v01-projector-trained |
|
license: apache-2.0 |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: Mists-7B-v01-single-turn |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/siseikatu8/huggingface/runs/aun0jon1) |
|
# Mists-7B-v01-single-turn |
|
|
|
This model is a fine-tuned version of [HachiML/Mists-7B-v01-projector-trained](https://huggingface.co/HachiML/Mists-7B-v01-projector-trained) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4228 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 0.6859 | 0.0420 | 400 | 1.1048 | |
|
| 0.7572 | 0.0841 | 800 | 0.8318 | |
|
| 0.664 | 0.1261 | 1200 | 0.7295 | |
|
| 0.6135 | 0.1682 | 1600 | 0.6526 | |
|
| 0.5707 | 0.2102 | 2000 | 0.6007 | |
|
| 0.5506 | 0.2523 | 2400 | 0.5653 | |
|
| 0.5255 | 0.2943 | 2800 | 0.5434 | |
|
| 0.5106 | 0.3363 | 3200 | 0.5219 | |
|
| 0.4909 | 0.3784 | 3600 | 0.5045 | |
|
| 0.4773 | 0.4204 | 4000 | 0.4874 | |
|
| 0.4664 | 0.4625 | 4400 | 0.4762 | |
|
| 0.4555 | 0.5045 | 4800 | 0.4663 | |
|
| 0.4516 | 0.5466 | 5200 | 0.4560 | |
|
| 0.4466 | 0.5886 | 5600 | 0.4490 | |
|
| 0.4403 | 0.6306 | 6000 | 0.4433 | |
|
| 0.4323 | 0.6727 | 6400 | 0.4383 | |
|
| 0.4337 | 0.7147 | 6800 | 0.4324 | |
|
| 0.4214 | 0.7568 | 7200 | 0.4297 | |
|
| 0.4153 | 0.7988 | 7600 | 0.4269 | |
|
| 0.414 | 0.8409 | 8000 | 0.4250 | |
|
| 0.4187 | 0.8829 | 8400 | 0.4238 | |
|
| 0.418 | 0.9250 | 8800 | 0.4230 | |
|
| 0.4126 | 0.9670 | 9200 | 0.4228 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.3 |
|
- Pytorch 2.0.1 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|