--- # dialogue-bart-large-chinese This is a seq2seq model fine-tuned on several Chinese dialogue datasets, from bart-large-chinese. # Datasets We utilize 4 Chinese dialogue datasets from [LUGE](https://www.luge.ai/#/) | | | | | ---- | ---- | ---- | | | Count | Domain | | Chinese Persona Chat (CPC) | 23,000 | Open | | LCCC | 11,987,759 | Open | | Emotional STC (ESTC) | 899,207 | Open | | KdConv | 3,000 | Movie, Music, Travel | | | | | # Example ```python from transformers import BertTokenizer, BartForConditionalGeneration # Note that tokenizer is an object of BertTokenizer, instead of BartTokenizer tokenizer = BertTokenizer.from_pretrained("HIT-TMG/dialogue-bart-large-chinese") model = BartForConditionalGeneration.from_pretrained("HIT-TMG/dialogue-bart-large-chinese") # an example from CPC dev data dialogue_history = "可以 认识 一下 吗 ? [SEP] 当然 可以 啦 , 你好 。 [SEP] 嘿嘿 你好 , 请问 你 最近 在 忙 什么 呢 ? [SEP] 我 最近 养 了 一只 狗狗 , 我 在 训练 它 呢 。" input_ids = tokenizer(dialogue_history, return_tensors='pt').input_ids output_ids = model.generate(input_ids)[0] print(tokenizer.decode(output_ids)) ```