Upload data.py
Browse files
data.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Fri Apr 26 16:31:20 2019
|
4 |
+
|
5 |
+
@author: ELİF NUR
|
6 |
+
"""
|
7 |
+
import pandas as pd
|
8 |
+
import numpy as np
|
9 |
+
from sklearn.model_selection import train_test_split
|
10 |
+
from sklearn.preprocessing import LabelEncoder
|
11 |
+
from sklearn import preprocessing
|
12 |
+
|
13 |
+
def loadData(fromPath,LabelColumnName,labelCount):#This method to read the csv file and change the label feature
|
14 |
+
|
15 |
+
data_=pd.read_csv(fromPath)
|
16 |
+
if labelCount==2:
|
17 |
+
dataset=data_
|
18 |
+
dataset[LabelColumnName]=dataset[LabelColumnName].apply({'DoS':'Anormal','BENIGN':'Normal' ,'DDoS':'Anormal', 'PortScan':'Anormal'}.get)
|
19 |
+
else:
|
20 |
+
dataset=data_
|
21 |
+
data=dataset[LabelColumnName].value_counts()
|
22 |
+
data.plot(kind='pie')
|
23 |
+
featureList= dataset.drop([LabelColumnName],axis=1).columns
|
24 |
+
return dataset,featureList
|
25 |
+
|
26 |
+
def datasetSplit(df,LabelColumnName):#This method is to separate the dataset as X and y.
|
27 |
+
labelencoder = LabelEncoder()
|
28 |
+
df.iloc[:, -1] = labelencoder.fit_transform(df.iloc[:, -1])
|
29 |
+
X = df.drop([LabelColumnName],axis=1)
|
30 |
+
X = np.array(X)
|
31 |
+
X = X.T
|
32 |
+
for column in X: #Control of values in X
|
33 |
+
median = np.nanmedian(column)
|
34 |
+
column[np.isnan(column)] = median
|
35 |
+
column[column == np.inf] = 0
|
36 |
+
column[column == -np.inf] = 0
|
37 |
+
X = X.T
|
38 |
+
scaler = preprocessing.MinMaxScaler()
|
39 |
+
X= scaler.fit_transform(X)
|
40 |
+
y=df[[LabelColumnName]]
|
41 |
+
return X,y
|
42 |
+
|
43 |
+
def train_test_dataset(df): #This method is to separate the dataset as X_train,X_test,y_train and y_test.
|
44 |
+
labelencoder = LabelEncoder()
|
45 |
+
df.iloc[:, -1] = labelencoder.fit_transform(df.iloc[:, -1])
|
46 |
+
X = df.drop([LabelColumnName],axis=1)
|
47 |
+
y=df[[LabelColumnName]]
|
48 |
+
X_train, X_test, y_train, y_test = train_test_split(X,y, train_size = 0.7, test_size = 0.3, random_state = 0, stratify = y)
|
49 |
+
X_train = np.array(X_train)
|
50 |
+
X_train = X_train.T
|
51 |
+
for column in X_train:
|
52 |
+
median = np.nanmedian(column)
|
53 |
+
column[np.isnan(column)] = median
|
54 |
+
column[column == np.inf] = 0
|
55 |
+
column[column == -np.inf] = 0
|
56 |
+
X_train = X_train.T
|
57 |
+
y_train = np.array(y_train)
|
58 |
+
y_train = y_train.T
|
59 |
+
for column in y_train:
|
60 |
+
median = np.nanmedian(column)
|
61 |
+
column[np.isnan(column)] = median
|
62 |
+
column[column == np.inf] = 0
|
63 |
+
column[column == -np.inf] = 0
|
64 |
+
y_train = y_train.T
|
65 |
+
X_test = np.array(X_test)
|
66 |
+
X_test = X_test.T
|
67 |
+
for column in X_test:
|
68 |
+
median = np.nanmedian(column)
|
69 |
+
column[np.isnan(column)] = median
|
70 |
+
column[column == np.inf] = 0
|
71 |
+
column[column == -np.inf] = 0
|
72 |
+
X_test = X_test.T
|
73 |
+
y_test = np.array(y_test)
|
74 |
+
y_test = y_test.T
|
75 |
+
for column in y_test:
|
76 |
+
median = np.nanmedian(column)
|
77 |
+
column[np.isnan(column)] = median
|
78 |
+
column[column == np.inf] = 0
|
79 |
+
column[column == -np.inf] = 0
|
80 |
+
y_test = y_test.T
|
81 |
+
|
82 |
+
|
83 |
+
return X_train, X_test, y_train, y_test
|
84 |
+
|