--- tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: roberta-base-squad2 results: [] --- # roberta-base-squad2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad_v2 dataset. ## Model description RoBERTa is based on BERT pretrain approach but it t evaluates carefully a number of design decisions of BERT pretraining approach so that it found it is undertrained. It suggested a way to improve the performance by training the model longer, with bigger batches over more data, removing the next sentence prediction objectives, training on longer sequences and dynamically changing mask pattern applied to the training data. As a result, it achieves state-of-the-art results on GLUE, RACE and SQuAD and so on on. Paper link : [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/pdf/1907.11692.pdf) ## Training and evaluation data Trained and evaluated on the [squad_v2 dataset](https://huggingface.co/datasets/squad_v2). ## Training procedure Trained on 16 Graphcore Mk2 IPUs using [optimum-graphcore](https://github.com/huggingface/optimum-graphcore). Command line: ``` python examples/question-answering/run_qa.py \ --ipu_config_name Graphcore/roberta-base-ipu \ --model_name_or_path roberta-base \ --dataset_name squad_v2 \ --version_2_with_negative \ --do_train \ --do_eval \ --num_train_epochs 3 \ --per_device_train_batch_size 4 \ --per_device_eval_batch_size 2 \ --pod_type pod16 \ --learning_rate 7e-5 \ --max_seq_length 384 \ --doc_stride 128 \ --seed 1984 \ --lr_scheduler_type linear \ --loss_scaling 64 \ --weight_decay 0.01 \ --warmup_ratio 0.2 \ --logging_steps 1 \ --save_steps -1 \ --dataloader_num_workers 64 \ --output_dir roberta-base-squad2 \ --overwrite_output_dir \ --push_to_hub ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 1984 - distributed_type: IPU - total_train_batch_size: 256 - total_eval_batch_size: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 3.0 - training precision: Mixed Precision ### Training results ``` ***** train metrics ***** epoch = 3.0 train_loss = 0.9982 train_runtime = 0:04:44.21 train_samples = 131823 train_samples_per_second = 1391.43 train_steps_per_second = 5.425 ***** eval metrics ***** epoch = 3.0 eval_HasAns_exact = 78.1208 eval_HasAns_f1 = 84.6569 eval_HasAns_total = 5928 eval_NoAns_exact = 82.0353 eval_NoAns_f1 = 82.0353 eval_NoAns_total = 5945 eval_best_exact = 80.0809 eval_best_exact_thresh = 0.0 eval_best_f1 = 83.3442 eval_best_f1_thresh = 0.0 eval_exact = 80.0809 eval_f1 = 83.3442 eval_samples = 12165 eval_total = 11873 ``` ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cpu - Datasets 2.0.0 - Tokenizers 0.11.6