File size: 2,373 Bytes
0eb5275 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wikiann
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: funnel-transformer-xlarge_ner_wikiann
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: wikiann
type: wikiann
args: en
metrics:
- name: Precision
type: precision
value: 0.8522084990579862
- name: Recall
type: recall
value: 0.8633535981903011
- name: F1
type: f1
value: 0.8577448467184043
- name: Accuracy
type: accuracy
value: 0.935805105791199
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# funnel-transformer-xlarge_ner_wikiann
This model is a fine-tuned version of [funnel-transformer/xlarge](https://huggingface.co/funnel-transformer/xlarge) on the wikiann dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4023
- Precision: 0.8522
- Recall: 0.8634
- F1: 0.8577
- Accuracy: 0.9358
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.3193 | 1.0 | 5000 | 0.3116 | 0.8239 | 0.8296 | 0.8267 | 0.9260 |
| 0.2836 | 2.0 | 10000 | 0.2846 | 0.8446 | 0.8498 | 0.8472 | 0.9325 |
| 0.2237 | 3.0 | 15000 | 0.3258 | 0.8427 | 0.8542 | 0.8484 | 0.9332 |
| 0.1303 | 4.0 | 20000 | 0.3801 | 0.8531 | 0.8634 | 0.8582 | 0.9362 |
| 0.0867 | 5.0 | 25000 | 0.4023 | 0.8522 | 0.8634 | 0.8577 | 0.9358 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|