--- base_model: openai/whisper-base datasets: - mozilla-foundation/common_voice_17_0 language: - nl license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: Whisper Base NL results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: nl split: test args: 'config: nl, split: test' metrics: - type: wer value: 19.0031 name: Wer --- # Whisper Base NL This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.343928 - Wer: 19.003155 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 7500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Step | Validation Loss | Wer | |:-------------:|:----:|:---------------:|:-------:| | 0.3639 | 500 | 0.396971 | 24.3028 | | 0.2625 | 1000 | 0.358340 | 22.5210 | | 0.2212 | 1500 | 0.341232 | 21.0322 | | 0.1455 | 2000 | 0.330033 | 20.2046 | | 0.1406 | 2500 | 0.324484 | 20.0508 | | 0.1244 | 3000 | 0.321562 | 19.5279 | | 0.0848 | 3500 | 0.321506 | 19.5114 | | 0.0844 | 4000 | 0.316492 | 19.1462 | | 0.0731 | 4500 | 0.321992 | 19.0167 | | 0.0515 | 5000 | 0.324720 | 19.1492 | | 0.0532 | 5500 | 0.324773 | 19.0148 | | 0.0426 | 6000 | 0.332404 | 19.0576 | | 0.0328 | 6500 | 0.334900 | 18.8249 | | 0.0327 | 7000 | 0.335876 | 19.0080 | | 0.0252 | 7500 | 0.343928 | 19.0031 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1