Gary0205 commited on
Commit
a5b9d70
1 Parent(s): 78c40f5

Upload 5 files

Browse files
Files changed (5) hide show
  1. CONTRIBUTING.md +25 -0
  2. LICENSE +202 -0
  3. README.md +133 -0
  4. graphcast_demo.ipynb +853 -0
  5. setup.py +61 -0
CONTRIBUTING.md ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # How to Contribute
2
+
3
+ ## Contributor License Agreement
4
+
5
+ Contributions to this project must be accompanied by a Contributor License
6
+ Agreement. You (or your employer) retain the copyright to your contribution,
7
+ this simply gives us permission to use and redistribute your contributions as
8
+ part of the project. Head over to <https://cla.developers.google.com/> to see
9
+ your current agreements on file or to sign a new one.
10
+
11
+ You generally only need to submit a CLA once, so if you've already submitted one
12
+ (even if it was for a different project), you probably don't need to do it
13
+ again.
14
+
15
+ ## Code reviews
16
+
17
+ All submissions, including submissions by project members, require review. We
18
+ use GitHub pull requests for this purpose. Consult
19
+ [GitHub Help](https://help.github.com/articles/about-pull-requests/) for more
20
+ information on using pull requests.
21
+
22
+ ## Community Guidelines
23
+
24
+ This project follows [Google's Open Source Community
25
+ Guidelines](https://opensource.google/conduct/).
LICENSE ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Apache License
3
+ Version 2.0, January 2004
4
+ http://www.apache.org/licenses/
5
+
6
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7
+
8
+ 1. Definitions.
9
+
10
+ "License" shall mean the terms and conditions for use, reproduction,
11
+ and distribution as defined by Sections 1 through 9 of this document.
12
+
13
+ "Licensor" shall mean the copyright owner or entity authorized by
14
+ the copyright owner that is granting the License.
15
+
16
+ "Legal Entity" shall mean the union of the acting entity and all
17
+ other entities that control, are controlled by, or are under common
18
+ control with that entity. For the purposes of this definition,
19
+ "control" means (i) the power, direct or indirect, to cause the
20
+ direction or management of such entity, whether by contract or
21
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
22
+ outstanding shares, or (iii) beneficial ownership of such entity.
23
+
24
+ "You" (or "Your") shall mean an individual or Legal Entity
25
+ exercising permissions granted by this License.
26
+
27
+ "Source" form shall mean the preferred form for making modifications,
28
+ including but not limited to software source code, documentation
29
+ source, and configuration files.
30
+
31
+ "Object" form shall mean any form resulting from mechanical
32
+ transformation or translation of a Source form, including but
33
+ not limited to compiled object code, generated documentation,
34
+ and conversions to other media types.
35
+
36
+ "Work" shall mean the work of authorship, whether in Source or
37
+ Object form, made available under the License, as indicated by a
38
+ copyright notice that is included in or attached to the work
39
+ (an example is provided in the Appendix below).
40
+
41
+ "Derivative Works" shall mean any work, whether in Source or Object
42
+ form, that is based on (or derived from) the Work and for which the
43
+ editorial revisions, annotations, elaborations, or other modifications
44
+ represent, as a whole, an original work of authorship. For the purposes
45
+ of this License, Derivative Works shall not include works that remain
46
+ separable from, or merely link (or bind by name) to the interfaces of,
47
+ the Work and Derivative Works thereof.
48
+
49
+ "Contribution" shall mean any work of authorship, including
50
+ the original version of the Work and any modifications or additions
51
+ to that Work or Derivative Works thereof, that is intentionally
52
+ submitted to Licensor for inclusion in the Work by the copyright owner
53
+ or by an individual or Legal Entity authorized to submit on behalf of
54
+ the copyright owner. For the purposes of this definition, "submitted"
55
+ means any form of electronic, verbal, or written communication sent
56
+ to the Licensor or its representatives, including but not limited to
57
+ communication on electronic mailing lists, source code control systems,
58
+ and issue tracking systems that are managed by, or on behalf of, the
59
+ Licensor for the purpose of discussing and improving the Work, but
60
+ excluding communication that is conspicuously marked or otherwise
61
+ designated in writing by the copyright owner as "Not a Contribution."
62
+
63
+ "Contributor" shall mean Licensor and any individual or Legal Entity
64
+ on behalf of whom a Contribution has been received by Licensor and
65
+ subsequently incorporated within the Work.
66
+
67
+ 2. Grant of Copyright License. Subject to the terms and conditions of
68
+ this License, each Contributor hereby grants to You a perpetual,
69
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70
+ copyright license to reproduce, prepare Derivative Works of,
71
+ publicly display, publicly perform, sublicense, and distribute the
72
+ Work and such Derivative Works in Source or Object form.
73
+
74
+ 3. Grant of Patent License. Subject to the terms and conditions of
75
+ this License, each Contributor hereby grants to You a perpetual,
76
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77
+ (except as stated in this section) patent license to make, have made,
78
+ use, offer to sell, sell, import, and otherwise transfer the Work,
79
+ where such license applies only to those patent claims licensable
80
+ by such Contributor that are necessarily infringed by their
81
+ Contribution(s) alone or by combination of their Contribution(s)
82
+ with the Work to which such Contribution(s) was submitted. If You
83
+ institute patent litigation against any entity (including a
84
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
85
+ or a Contribution incorporated within the Work constitutes direct
86
+ or contributory patent infringement, then any patent licenses
87
+ granted to You under this License for that Work shall terminate
88
+ as of the date such litigation is filed.
89
+
90
+ 4. Redistribution. You may reproduce and distribute copies of the
91
+ Work or Derivative Works thereof in any medium, with or without
92
+ modifications, and in Source or Object form, provided that You
93
+ meet the following conditions:
94
+
95
+ (a) You must give any other recipients of the Work or
96
+ Derivative Works a copy of this License; and
97
+
98
+ (b) You must cause any modified files to carry prominent notices
99
+ stating that You changed the files; and
100
+
101
+ (c) You must retain, in the Source form of any Derivative Works
102
+ that You distribute, all copyright, patent, trademark, and
103
+ attribution notices from the Source form of the Work,
104
+ excluding those notices that do not pertain to any part of
105
+ the Derivative Works; and
106
+
107
+ (d) If the Work includes a "NOTICE" text file as part of its
108
+ distribution, then any Derivative Works that You distribute must
109
+ include a readable copy of the attribution notices contained
110
+ within such NOTICE file, excluding those notices that do not
111
+ pertain to any part of the Derivative Works, in at least one
112
+ of the following places: within a NOTICE text file distributed
113
+ as part of the Derivative Works; within the Source form or
114
+ documentation, if provided along with the Derivative Works; or,
115
+ within a display generated by the Derivative Works, if and
116
+ wherever such third-party notices normally appear. The contents
117
+ of the NOTICE file are for informational purposes only and
118
+ do not modify the License. You may add Your own attribution
119
+ notices within Derivative Works that You distribute, alongside
120
+ or as an addendum to the NOTICE text from the Work, provided
121
+ that such additional attribution notices cannot be construed
122
+ as modifying the License.
123
+
124
+ You may add Your own copyright statement to Your modifications and
125
+ may provide additional or different license terms and conditions
126
+ for use, reproduction, or distribution of Your modifications, or
127
+ for any such Derivative Works as a whole, provided Your use,
128
+ reproduction, and distribution of the Work otherwise complies with
129
+ the conditions stated in this License.
130
+
131
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
132
+ any Contribution intentionally submitted for inclusion in the Work
133
+ by You to the Licensor shall be under the terms and conditions of
134
+ this License, without any additional terms or conditions.
135
+ Notwithstanding the above, nothing herein shall supersede or modify
136
+ the terms of any separate license agreement you may have executed
137
+ with Licensor regarding such Contributions.
138
+
139
+ 6. Trademarks. This License does not grant permission to use the trade
140
+ names, trademarks, service marks, or product names of the Licensor,
141
+ except as required for reasonable and customary use in describing the
142
+ origin of the Work and reproducing the content of the NOTICE file.
143
+
144
+ 7. Disclaimer of Warranty. Unless required by applicable law or
145
+ agreed to in writing, Licensor provides the Work (and each
146
+ Contributor provides its Contributions) on an "AS IS" BASIS,
147
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148
+ implied, including, without limitation, any warranties or conditions
149
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150
+ PARTICULAR PURPOSE. You are solely responsible for determining the
151
+ appropriateness of using or redistributing the Work and assume any
152
+ risks associated with Your exercise of permissions under this License.
153
+
154
+ 8. Limitation of Liability. In no event and under no legal theory,
155
+ whether in tort (including negligence), contract, or otherwise,
156
+ unless required by applicable law (such as deliberate and grossly
157
+ negligent acts) or agreed to in writing, shall any Contributor be
158
+ liable to You for damages, including any direct, indirect, special,
159
+ incidental, or consequential damages of any character arising as a
160
+ result of this License or out of the use or inability to use the
161
+ Work (including but not limited to damages for loss of goodwill,
162
+ work stoppage, computer failure or malfunction, or any and all
163
+ other commercial damages or losses), even if such Contributor
164
+ has been advised of the possibility of such damages.
165
+
166
+ 9. Accepting Warranty or Additional Liability. While redistributing
167
+ the Work or Derivative Works thereof, You may choose to offer,
168
+ and charge a fee for, acceptance of support, warranty, indemnity,
169
+ or other liability obligations and/or rights consistent with this
170
+ License. However, in accepting such obligations, You may act only
171
+ on Your own behalf and on Your sole responsibility, not on behalf
172
+ of any other Contributor, and only if You agree to indemnify,
173
+ defend, and hold each Contributor harmless for any liability
174
+ incurred by, or claims asserted against, such Contributor by reason
175
+ of your accepting any such warranty or additional liability.
176
+
177
+ END OF TERMS AND CONDITIONS
178
+
179
+ APPENDIX: How to apply the Apache License to your work.
180
+
181
+ To apply the Apache License to your work, attach the following
182
+ boilerplate notice, with the fields enclosed by brackets "[]"
183
+ replaced with your own identifying information. (Don't include
184
+ the brackets!) The text should be enclosed in the appropriate
185
+ comment syntax for the file format. We also recommend that a
186
+ file or class name and description of purpose be included on the
187
+ same "printed page" as the copyright notice for easier
188
+ identification within third-party archives.
189
+
190
+ Copyright [yyyy] [name of copyright owner]
191
+
192
+ Licensed under the Apache License, Version 2.0 (the "License");
193
+ you may not use this file except in compliance with the License.
194
+ You may obtain a copy of the License at
195
+
196
+ http://www.apache.org/licenses/LICENSE-2.0
197
+
198
+ Unless required by applicable law or agreed to in writing, software
199
+ distributed under the License is distributed on an "AS IS" BASIS,
200
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
201
+ See the License for the specific language governing permissions and
202
+ limitations under the License.
README.md CHANGED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # GraphCast: Learning skillful medium-range global weather forecasting
2
+
3
+ This package contains example code to run and train [GraphCast](https://www.science.org/doi/10.1126/science.adi2336).
4
+ It also provides three pretrained models:
5
+
6
+ 1. `GraphCast`, the high-resolution model used in the GraphCast paper (0.25 degree
7
+ resolution, 37 pressure levels), trained on ERA5 data from 1979 to 2017,
8
+
9
+ 2. `GraphCast_small`, a smaller, low-resolution version of GraphCast (1 degree
10
+ resolution, 13 pressure levels, and a smaller mesh), trained on ERA5 data from
11
+ 1979 to 2015, useful to run a model with lower memory and compute constraints,
12
+
13
+ 3. `GraphCast_operational`, a high-resolution model (0.25 degree resolution, 13
14
+ pressure levels) pre-trained on ERA5 data from 1979 to 2017 and fine-tuned on
15
+ HRES data from 2016 to 2021. This model can be initialized from HRES data (does
16
+ not require precipitation inputs).
17
+
18
+ The model weights, normalization statistics, and example inputs are available on [Google Cloud Bucket](https://console.cloud.google.com/storage/browser/dm_graphcast).
19
+
20
+ Full model training requires downloading the
21
+ [ERA5](https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5)
22
+ dataset, available from [ECMWF](https://www.ecmwf.int/). This can best be
23
+ accessed as Zarr from [Weatherbench2's ERA5 data](https://weatherbench2.readthedocs.io/en/latest/data-guide.html#era5) (see the 6h downsampled versions).
24
+
25
+ ## Overview of files
26
+
27
+ The best starting point is to open `graphcast_demo.ipynb` in [Colaboratory](https://colab.research.google.com/github/deepmind/graphcast/blob/master/graphcast_demo.ipynb), which gives an
28
+ example of loading data, generating random weights or load a pre-trained
29
+ snapshot, generating predictions, computing the loss and computing gradients.
30
+ The one-step implementation of GraphCast architecture, is provided in
31
+ `graphcast.py`.
32
+
33
+ ### Brief description of library files:
34
+
35
+ * `autoregressive.py`: Wrapper used to run (and train) the one-step GraphCast
36
+ to produce a sequence of predictions by auto-regressively feeding the
37
+ outputs back as inputs at each step, in JAX a differentiable way.
38
+ * `casting.py`: Wrapper used around GraphCast to make it work using
39
+ BFloat16 precision.
40
+ * `checkpoint.py`: Utils to serialize and deserialize trees.
41
+ * `data_utils.py`: Utils for data preprocessing.
42
+ * `deep_typed_graph_net.py`: General purpose deep graph neural network (GNN)
43
+ that operates on `TypedGraph`'s where both inputs and outputs are flat
44
+ vectors of features for each of the nodes and edges. `graphcast.py` uses
45
+ three of these for the Grid2Mesh GNN, the Multi-mesh GNN and the Mesh2Grid
46
+ GNN, respectively.
47
+ * `graphcast.py`: The main GraphCast model architecture for one-step of
48
+ predictions.
49
+ * `grid_mesh_connectivity.py`: Tools for converting between regular grids on a
50
+ sphere and triangular meshes.
51
+ * `icosahedral_mesh.py`: Definition of an icosahedral multi-mesh.
52
+ * `losses.py`: Loss computations, including latitude-weighting.
53
+ * `model_utils.py`: Utilities to produce flat node and edge vector features
54
+ from input grid data, and to manipulate the node output vectors back
55
+ into a multilevel grid data.
56
+ * `normalization.py`: Wrapper for the one-step GraphCast used to normalize
57
+ inputs according to historical values, and targets according to historical
58
+ time differences.
59
+ * `predictor_base.py`: Defines the interface of the predictor, which GraphCast
60
+ and all of the wrappers implement.
61
+ * `rollout.py`: Similar to `autoregressive.py` but used only at inference time
62
+ using a python loop to produce longer, but non-differentiable trajectories.
63
+ * `solar_radiation.py`: Computes Top-Of-the-Atmosphere (TOA) incident solar
64
+ radiation compatible with ERA5. This is used as a forcing variable and thus
65
+ needs to be computed for target lead times in an operational setting.
66
+ * `typed_graph.py`: Definition of `TypedGraph`'s.
67
+ * `typed_graph_net.py`: Implementation of simple graph neural network
68
+ building blocks defined over `TypedGraph`'s that can be combined to build
69
+ deeper models.
70
+ * `xarray_jax.py`: A wrapper to let JAX work with `xarray`s.
71
+ * `xarray_tree.py`: An implementation of tree.map_structure that works with
72
+ `xarray`s.
73
+
74
+
75
+ ### Dependencies.
76
+
77
+ [Chex](https://github.com/deepmind/chex),
78
+ [Dask](https://github.com/dask/dask),
79
+ [Haiku](https://github.com/deepmind/dm-haiku),
80
+ [JAX](https://github.com/google/jax),
81
+ [JAXline](https://github.com/deepmind/jaxline),
82
+ [Jraph](https://github.com/deepmind/jraph),
83
+ [Numpy](https://numpy.org/),
84
+ [Pandas](https://pandas.pydata.org/),
85
+ [Python](https://www.python.org/),
86
+ [SciPy](https://scipy.org/),
87
+ [Tree](https://github.com/deepmind/tree),
88
+ [Trimesh](https://github.com/mikedh/trimesh) and
89
+ [XArray](https://github.com/pydata/xarray).
90
+
91
+
92
+ ### License and attribution
93
+
94
+ The Colab notebook and the associated code are licensed under the Apache
95
+ License, Version 2.0. You may obtain a copy of the License at:
96
+ https://www.apache.org/licenses/LICENSE-2.0.
97
+
98
+ The model weights are made available for use under the terms of the Creative
99
+ Commons Attribution-NonCommercial-ShareAlike 4.0 International
100
+ (CC BY-NC-SA 4.0). You may obtain a copy of the License at:
101
+ https://creativecommons.org/licenses/by-nc-sa/4.0/.
102
+
103
+ The weights were trained on ECMWF's ERA5 and HRES data. The colab includes a few
104
+ examples of ERA5 and HRES data that can be used as inputs to the models.
105
+ ECMWF data product are subject to the following terms:
106
+
107
+ 1. Copyright statement: Copyright "© 2023 European Centre for Medium-Range Weather Forecasts (ECMWF)".
108
+ 2. Source www.ecmwf.int
109
+ 3. Licence Statement: ECMWF data is published under a Creative Commons Attribution 4.0 International (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/
110
+ 4. Disclaimer: ECMWF does not accept any liability whatsoever for any error or omission in the data, their availability, or for any loss or damage arising from their use.
111
+
112
+ ### Disclaimer
113
+
114
+ This is not an officially supported Google product.
115
+
116
+ Copyright 2023 DeepMind Technologies Limited.
117
+
118
+ ### Citation
119
+
120
+ If you use this work, consider citing our paper ([blog post](https://deepmind.google/discover/blog/graphcast-ai-model-for-faster-and-more-accurate-global-weather-forecasting/), [Science](https://www.science.org/doi/10.1126/science.adi2336), [arXiv](https://arxiv.org/abs/2212.12794)):
121
+
122
+ ```latex
123
+ @article{lam2023learning,
124
+ title={Learning skillful medium-range global weather forecasting},
125
+ author={Lam, Remi and Sanchez-Gonzalez, Alvaro and Willson, Matthew and Wirnsberger, Peter and Fortunato, Meire and Alet, Ferran and Ravuri, Suman and Ewalds, Timo and Eaton-Rosen, Zach and Hu, Weihua and others},
126
+ journal={Science},
127
+ volume={382},
128
+ number={6677},
129
+ pages={1416--1421},
130
+ year={2023},
131
+ publisher={American Association for the Advancement of Science}
132
+ }
133
+ ```
graphcast_demo.ipynb ADDED
@@ -0,0 +1,853 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {
6
+ "id": "-jAYlxeKxvAJ"
7
+ },
8
+ "source": [
9
+ "# GraphCast\n",
10
+ "\n",
11
+ "This colab lets you run several versions of GraphCast.\n",
12
+ "\n",
13
+ "The model weights, normalization statistics, and example inputs are available on [Google Cloud Bucket](https://console.cloud.google.com/storage/browser/dm_graphcast).\n",
14
+ "\n",
15
+ "A Colab runtime with TPU/GPU acceleration will substantially speed up generating predictions and computing the loss/gradients. If you're using a CPU-only runtime, you can switch using the menu \"Runtime \u003e Change runtime type\"."
16
+ ]
17
+ },
18
+ {
19
+ "cell_type": "markdown",
20
+ "metadata": {
21
+ "id": "IIWlNRupdI2i"
22
+ },
23
+ "source": [
24
+ "\u003e \u003cp\u003e\u003csmall\u003e\u003csmall\u003eCopyright 2023 DeepMind Technologies Limited.\u003c/small\u003e\u003c/p\u003e\n",
25
+ "\u003e \u003cp\u003e\u003csmall\u003e\u003csmall\u003eLicensed under the Apache License, Version 2.0 (the \"License\"); you may not use this file except in compliance with the License. You may obtain a copy of the License at \u003ca href=\"http://www.apache.org/licenses/LICENSE-2.0\"\u003ehttp://www.apache.org/licenses/LICENSE-2.0\u003c/a\u003e.\u003c/small\u003e\u003c/small\u003e\u003c/p\u003e\n",
26
+ "\u003e \u003cp\u003e\u003csmall\u003e\u003csmall\u003eUnless required by applicable law or agreed to in writing, software distributed under the License is distributed on an \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.\u003c/small\u003e\u003c/small\u003e\u003c/p\u003e"
27
+ ]
28
+ },
29
+ {
30
+ "cell_type": "markdown",
31
+ "metadata": {
32
+ "id": "yMbbXFl4msJw"
33
+ },
34
+ "source": [
35
+ "# Installation and Initialization\n"
36
+ ]
37
+ },
38
+ {
39
+ "cell_type": "code",
40
+ "execution_count": null,
41
+ "metadata": {
42
+ "cellView": "form",
43
+ "id": "-W4K9skv9vh-"
44
+ },
45
+ "outputs": [],
46
+ "source": [
47
+ "# @title Pip install graphcast and dependencies\n",
48
+ "\n",
49
+ "%pip install --upgrade https://github.com/deepmind/graphcast/archive/master.zip"
50
+ ]
51
+ },
52
+ {
53
+ "cell_type": "code",
54
+ "execution_count": null,
55
+ "metadata": {
56
+ "cellView": "form",
57
+ "id": "MA5087Vb29z2"
58
+ },
59
+ "outputs": [],
60
+ "source": [
61
+ "# @title Workaround for cartopy crashes\n",
62
+ "\n",
63
+ "# Workaround for cartopy crashes due to the shapely installed by default in\n",
64
+ "# google colab kernel (https://github.com/anitagraser/movingpandas/issues/81):\n",
65
+ "!pip uninstall -y shapely\n",
66
+ "!pip install shapely --no-binary shapely"
67
+ ]
68
+ },
69
+ {
70
+ "cell_type": "code",
71
+ "execution_count": null,
72
+ "metadata": {
73
+ "cellView": "form",
74
+ "id": "Z_j8ej4Pyg1L"
75
+ },
76
+ "outputs": [],
77
+ "source": [
78
+ "# @title Imports\n",
79
+ "\n",
80
+ "import dataclasses\n",
81
+ "import datetime\n",
82
+ "import functools\n",
83
+ "import math\n",
84
+ "import re\n",
85
+ "from typing import Optional\n",
86
+ "\n",
87
+ "import cartopy.crs as ccrs\n",
88
+ "from google.cloud import storage\n",
89
+ "from graphcast import autoregressive\n",
90
+ "from graphcast import casting\n",
91
+ "from graphcast import checkpoint\n",
92
+ "from graphcast import data_utils\n",
93
+ "from graphcast import graphcast\n",
94
+ "from graphcast import normalization\n",
95
+ "from graphcast import rollout\n",
96
+ "from graphcast import xarray_jax\n",
97
+ "from graphcast import xarray_tree\n",
98
+ "from IPython.display import HTML\n",
99
+ "import ipywidgets as widgets\n",
100
+ "import haiku as hk\n",
101
+ "import jax\n",
102
+ "import matplotlib\n",
103
+ "import matplotlib.pyplot as plt\n",
104
+ "from matplotlib import animation\n",
105
+ "import numpy as np\n",
106
+ "import xarray\n",
107
+ "\n",
108
+ "\n",
109
+ "def parse_file_parts(file_name):\n",
110
+ " return dict(part.split(\"-\", 1) for part in file_name.split(\"_\"))\n"
111
+ ]
112
+ },
113
+ {
114
+ "cell_type": "code",
115
+ "execution_count": null,
116
+ "metadata": {
117
+ "cellView": "form",
118
+ "id": "4wagX1TL_f15"
119
+ },
120
+ "outputs": [],
121
+ "source": [
122
+ "# @title Authenticate with Google Cloud Storage\n",
123
+ "\n",
124
+ "gcs_client = storage.Client.create_anonymous_client()\n",
125
+ "gcs_bucket = gcs_client.get_bucket(\"dm_graphcast\")"
126
+ ]
127
+ },
128
+ {
129
+ "cell_type": "code",
130
+ "execution_count": null,
131
+ "metadata": {
132
+ "cellView": "form",
133
+ "id": "5JUymx84dI2m"
134
+ },
135
+ "outputs": [],
136
+ "source": [
137
+ "# @title Plotting functions\n",
138
+ "\n",
139
+ "def select(\n",
140
+ " data: xarray.Dataset,\n",
141
+ " variable: str,\n",
142
+ " level: Optional[int] = None,\n",
143
+ " max_steps: Optional[int] = None\n",
144
+ " ) -\u003e xarray.Dataset:\n",
145
+ " data = data[variable]\n",
146
+ " if \"batch\" in data.dims:\n",
147
+ " data = data.isel(batch=0)\n",
148
+ " if max_steps is not None and \"time\" in data.sizes and max_steps \u003c data.sizes[\"time\"]:\n",
149
+ " data = data.isel(time=range(0, max_steps))\n",
150
+ " if level is not None and \"level\" in data.coords:\n",
151
+ " data = data.sel(level=level)\n",
152
+ " return data\n",
153
+ "\n",
154
+ "def scale(\n",
155
+ " data: xarray.Dataset,\n",
156
+ " center: Optional[float] = None,\n",
157
+ " robust: bool = False,\n",
158
+ " ) -\u003e tuple[xarray.Dataset, matplotlib.colors.Normalize, str]:\n",
159
+ " vmin = np.nanpercentile(data, (2 if robust else 0))\n",
160
+ " vmax = np.nanpercentile(data, (98 if robust else 100))\n",
161
+ " if center is not None:\n",
162
+ " diff = max(vmax - center, center - vmin)\n",
163
+ " vmin = center - diff\n",
164
+ " vmax = center + diff\n",
165
+ " return (data, matplotlib.colors.Normalize(vmin, vmax),\n",
166
+ " (\"RdBu_r\" if center is not None else \"viridis\"))\n",
167
+ "\n",
168
+ "def plot_data(\n",
169
+ " data: dict[str, xarray.Dataset],\n",
170
+ " fig_title: str,\n",
171
+ " plot_size: float = 5,\n",
172
+ " robust: bool = False,\n",
173
+ " cols: int = 4\n",
174
+ " ) -\u003e tuple[xarray.Dataset, matplotlib.colors.Normalize, str]:\n",
175
+ "\n",
176
+ " first_data = next(iter(data.values()))[0]\n",
177
+ " max_steps = first_data.sizes.get(\"time\", 1)\n",
178
+ " assert all(max_steps == d.sizes.get(\"time\", 1) for d, _, _ in data.values())\n",
179
+ "\n",
180
+ " cols = min(cols, len(data))\n",
181
+ " rows = math.ceil(len(data) / cols)\n",
182
+ " figure = plt.figure(figsize=(plot_size * 2 * cols,\n",
183
+ " plot_size * rows))\n",
184
+ " figure.suptitle(fig_title, fontsize=16)\n",
185
+ " figure.subplots_adjust(wspace=0, hspace=0)\n",
186
+ " figure.tight_layout()\n",
187
+ "\n",
188
+ " images = []\n",
189
+ " for i, (title, (plot_data, norm, cmap)) in enumerate(data.items()):\n",
190
+ " ax = figure.add_subplot(rows, cols, i+1)\n",
191
+ " ax.set_xticks([])\n",
192
+ " ax.set_yticks([])\n",
193
+ " ax.set_title(title)\n",
194
+ " im = ax.imshow(\n",
195
+ " plot_data.isel(time=0, missing_dims=\"ignore\"), norm=norm,\n",
196
+ " origin=\"lower\", cmap=cmap)\n",
197
+ " plt.colorbar(\n",
198
+ " mappable=im,\n",
199
+ " ax=ax,\n",
200
+ " orientation=\"vertical\",\n",
201
+ " pad=0.02,\n",
202
+ " aspect=16,\n",
203
+ " shrink=0.75,\n",
204
+ " cmap=cmap,\n",
205
+ " extend=(\"both\" if robust else \"neither\"))\n",
206
+ " images.append(im)\n",
207
+ "\n",
208
+ " def update(frame):\n",
209
+ " if \"time\" in first_data.dims:\n",
210
+ " td = datetime.timedelta(microseconds=first_data[\"time\"][frame].item() / 1000)\n",
211
+ " figure.suptitle(f\"{fig_title}, {td}\", fontsize=16)\n",
212
+ " else:\n",
213
+ " figure.suptitle(fig_title, fontsize=16)\n",
214
+ " for im, (plot_data, norm, cmap) in zip(images, data.values()):\n",
215
+ " im.set_data(plot_data.isel(time=frame, missing_dims=\"ignore\"))\n",
216
+ "\n",
217
+ " ani = animation.FuncAnimation(\n",
218
+ " fig=figure, func=update, frames=max_steps, interval=250)\n",
219
+ " plt.close(figure.number)\n",
220
+ " return HTML(ani.to_jshtml())"
221
+ ]
222
+ },
223
+ {
224
+ "cell_type": "markdown",
225
+ "metadata": {
226
+ "id": "WEtSV8HEkHtf"
227
+ },
228
+ "source": [
229
+ "# Load the Data and initialize the model"
230
+ ]
231
+ },
232
+ {
233
+ "cell_type": "markdown",
234
+ "metadata": {
235
+ "id": "G50ORsY_dI2n"
236
+ },
237
+ "source": [
238
+ "## Load the model params\n",
239
+ "\n",
240
+ "Choose one of the two ways of getting model params:\n",
241
+ "- **random**: You'll get random predictions, but you can change the model architecture, which may run faster or fit on your device.\n",
242
+ "- **checkpoint**: You'll get sensible predictions, but are limited to the model architecture that it was trained with, which may not fit on your device. In particular generating gradients uses a lot of memory, so you'll need at least 25GB of ram (TPUv4 or A100).\n",
243
+ "\n",
244
+ "Checkpoints vary across a few axes:\n",
245
+ "- The mesh size specifies the internal graph representation of the earth. Smaller meshes will run faster but will have worse outputs. The mesh size does not affect the number of parameters of the model.\n",
246
+ "- The resolution and number of pressure levels must match the data. Lower resolution and fewer levels will run a bit faster. Data resolution only affects the encoder/decoder.\n",
247
+ "- All our models predict precipitation. However, ERA5 includes precipitation, while HRES does not. Our models marked as \"ERA5\" take precipitation as input and expect ERA5 data as input, while model marked \"ERA5-HRES\" do not take precipitation as input and are specifically trained to take HRES-fc0 as input (see the data section below).\n",
248
+ "\n",
249
+ "We provide three pre-trained models.\n",
250
+ "1. `GraphCast`, the high-resolution model used in the GraphCast paper (0.25 degree resolution, 37 pressure levels), trained on ERA5 data from 1979 to 2017,\n",
251
+ "\n",
252
+ "2. `GraphCast_small`, a smaller, low-resolution version of GraphCast (1 degree resolution, 13 pressure levels, and a smaller mesh), trained on ERA5 data from 1979 to 2015, useful to run a model with lower memory and compute constraints,\n",
253
+ "\n",
254
+ "3. `GraphCast_operational`, a high-resolution model (0.25 degree resolution, 13 pressure levels) pre-trained on ERA5 data from 1979 to 2017 and fine-tuned on HRES data from 2016 to 2021. This model can be initialized from HRES data (does not require precipitation inputs).\n"
255
+ ]
256
+ },
257
+ {
258
+ "cell_type": "code",
259
+ "execution_count": null,
260
+ "metadata": {
261
+ "cellView": "form",
262
+ "id": "KGaJ6V9MdI2n"
263
+ },
264
+ "outputs": [],
265
+ "source": [
266
+ "# @title Choose the model\n",
267
+ "\n",
268
+ "params_file_options = [\n",
269
+ " name for blob in gcs_bucket.list_blobs(prefix=\"params/\")\n",
270
+ " if (name := blob.name.removeprefix(\"params/\"))] # Drop empty string.\n",
271
+ "\n",
272
+ "random_mesh_size = widgets.IntSlider(\n",
273
+ " value=4, min=4, max=6, description=\"Mesh size:\")\n",
274
+ "random_gnn_msg_steps = widgets.IntSlider(\n",
275
+ " value=4, min=1, max=32, description=\"GNN message steps:\")\n",
276
+ "random_latent_size = widgets.Dropdown(\n",
277
+ " options=[int(2**i) for i in range(4, 10)], value=32,description=\"Latent size:\")\n",
278
+ "random_levels = widgets.Dropdown(\n",
279
+ " options=[13, 37], value=13, description=\"Pressure levels:\")\n",
280
+ "\n",
281
+ "\n",
282
+ "params_file = widgets.Dropdown(\n",
283
+ " options=params_file_options,\n",
284
+ " description=\"Params file:\",\n",
285
+ " layout={\"width\": \"max-content\"})\n",
286
+ "\n",
287
+ "source_tab = widgets.Tab([\n",
288
+ " widgets.VBox([\n",
289
+ " random_mesh_size,\n",
290
+ " random_gnn_msg_steps,\n",
291
+ " random_latent_size,\n",
292
+ " random_levels,\n",
293
+ " ]),\n",
294
+ " params_file,\n",
295
+ "])\n",
296
+ "source_tab.set_title(0, \"Random\")\n",
297
+ "source_tab.set_title(1, \"Checkpoint\")\n",
298
+ "widgets.VBox([\n",
299
+ " source_tab,\n",
300
+ " widgets.Label(value=\"Run the next cell to load the model. Rerunning this cell clears your selection.\")\n",
301
+ "])\n"
302
+ ]
303
+ },
304
+ {
305
+ "cell_type": "code",
306
+ "execution_count": null,
307
+ "metadata": {
308
+ "cellView": "form",
309
+ "id": "lYQgrPgPdI2n"
310
+ },
311
+ "outputs": [],
312
+ "source": [
313
+ "# @title Load the model\n",
314
+ "\n",
315
+ "source = source_tab.get_title(source_tab.selected_index)\n",
316
+ "\n",
317
+ "if source == \"Random\":\n",
318
+ " params = None # Filled in below\n",
319
+ " state = {}\n",
320
+ " model_config = graphcast.ModelConfig(\n",
321
+ " resolution=0,\n",
322
+ " mesh_size=random_mesh_size.value,\n",
323
+ " latent_size=random_latent_size.value,\n",
324
+ " gnn_msg_steps=random_gnn_msg_steps.value,\n",
325
+ " hidden_layers=1,\n",
326
+ " radius_query_fraction_edge_length=0.6)\n",
327
+ " task_config = graphcast.TaskConfig(\n",
328
+ " input_variables=graphcast.TASK.input_variables,\n",
329
+ " target_variables=graphcast.TASK.target_variables,\n",
330
+ " forcing_variables=graphcast.TASK.forcing_variables,\n",
331
+ " pressure_levels=graphcast.PRESSURE_LEVELS[random_levels.value],\n",
332
+ " input_duration=graphcast.TASK.input_duration,\n",
333
+ " )\n",
334
+ "else:\n",
335
+ " assert source == \"Checkpoint\"\n",
336
+ " with gcs_bucket.blob(f\"params/{params_file.value}\").open(\"rb\") as f:\n",
337
+ " ckpt = checkpoint.load(f, graphcast.CheckPoint)\n",
338
+ " params = ckpt.params\n",
339
+ " state = {}\n",
340
+ "\n",
341
+ " model_config = ckpt.model_config\n",
342
+ " task_config = ckpt.task_config\n",
343
+ " print(\"Model description:\\n\", ckpt.description, \"\\n\")\n",
344
+ " print(\"Model license:\\n\", ckpt.license, \"\\n\")\n",
345
+ "\n",
346
+ "model_config"
347
+ ]
348
+ },
349
+ {
350
+ "cell_type": "markdown",
351
+ "metadata": {
352
+ "id": "rQWk0RRuCjDN"
353
+ },
354
+ "source": [
355
+ "## Load the example data\n",
356
+ "\n",
357
+ "Several example datasets are available, varying across a few axes:\n",
358
+ "- **Source**: fake, era5, hres\n",
359
+ "- **Resolution**: 0.25deg, 1deg, 6deg\n",
360
+ "- **Levels**: 13, 37\n",
361
+ "- **Steps**: How many timesteps are included\n",
362
+ "\n",
363
+ "Not all combinations are available.\n",
364
+ "- Higher resolution is only available for fewer steps due to the memory requirements of loading them.\n",
365
+ "- HRES is only available in 0.25 deg, with 13 pressure levels.\n",
366
+ "\n",
367
+ "The data resolution must match the model that is loaded.\n",
368
+ "\n",
369
+ "Some transformations were done from the base datasets:\n",
370
+ "- We accumulated precipitation over 6 hours instead of the default 1 hour.\n",
371
+ "- For HRES data, each time step corresponds to the HRES forecast at leadtime 0, essentially providing an \"initialisation\" from HRES. See HRES-fc0 in the GraphCast paper for further description. Note that a 6h accumulation of precipitation is not available from HRES, so our model taking HRES inputs does not depend on precipitation. However, because our models predict precipitation, we include the ERA5 precipitation in the example data so it can serve as an illustrative example of ground truth.\n",
372
+ "- We include ERA5 `toa_incident_solar_radiation` in the data. Our model uses the radiation at -6h, 0h and +6h as a forcing term for each 1-step prediction. If the radiation is missing from the data (e.g. in an operational setting), it will be computed using a custom implementation that produces values similar to those in ERA5."
373
+ ]
374
+ },
375
+ {
376
+ "cell_type": "code",
377
+ "execution_count": null,
378
+ "metadata": {
379
+ "cellView": "form",
380
+ "id": "-DJzie5me2-H"
381
+ },
382
+ "outputs": [],
383
+ "source": [
384
+ "# @title Get and filter the list of available example datasets\n",
385
+ "\n",
386
+ "dataset_file_options = [\n",
387
+ " name for blob in gcs_bucket.list_blobs(prefix=\"dataset/\")\n",
388
+ " if (name := blob.name.removeprefix(\"dataset/\"))] # Drop empty string.\n",
389
+ "\n",
390
+ "def data_valid_for_model(\n",
391
+ " file_name: str, model_config: graphcast.ModelConfig, task_config: graphcast.TaskConfig):\n",
392
+ " file_parts = parse_file_parts(file_name.removesuffix(\".nc\"))\n",
393
+ " return (\n",
394
+ " model_config.resolution in (0, float(file_parts[\"res\"])) and\n",
395
+ " len(task_config.pressure_levels) == int(file_parts[\"levels\"]) and\n",
396
+ " (\n",
397
+ " (\"total_precipitation_6hr\" in task_config.input_variables and\n",
398
+ " file_parts[\"source\"] in (\"era5\", \"fake\")) or\n",
399
+ " (\"total_precipitation_6hr\" not in task_config.input_variables and\n",
400
+ " file_parts[\"source\"] in (\"hres\", \"fake\"))\n",
401
+ " )\n",
402
+ " )\n",
403
+ "\n",
404
+ "\n",
405
+ "dataset_file = widgets.Dropdown(\n",
406
+ " options=[\n",
407
+ " (\", \".join([f\"{k}: {v}\" for k, v in parse_file_parts(option.removesuffix(\".nc\")).items()]), option)\n",
408
+ " for option in dataset_file_options\n",
409
+ " if data_valid_for_model(option, model_config, task_config)\n",
410
+ " ],\n",
411
+ " description=\"Dataset file:\",\n",
412
+ " layout={\"width\": \"max-content\"})\n",
413
+ "widgets.VBox([\n",
414
+ " dataset_file,\n",
415
+ " widgets.Label(value=\"Run the next cell to load the dataset. Rerunning this cell clears your selection and refilters the datasets that match your model.\")\n",
416
+ "])"
417
+ ]
418
+ },
419
+ {
420
+ "cell_type": "code",
421
+ "execution_count": null,
422
+ "metadata": {
423
+ "cellView": "form",
424
+ "id": "Yz-ekISoJxeZ"
425
+ },
426
+ "outputs": [],
427
+ "source": [
428
+ "# @title Load weather data\n",
429
+ "\n",
430
+ "if not data_valid_for_model(dataset_file.value, model_config, task_config):\n",
431
+ " raise ValueError(\n",
432
+ " \"Invalid dataset file, rerun the cell above and choose a valid dataset file.\")\n",
433
+ "\n",
434
+ "with gcs_bucket.blob(f\"dataset/{dataset_file.value}\").open(\"rb\") as f:\n",
435
+ " example_batch = xarray.load_dataset(f).compute()\n",
436
+ "\n",
437
+ "assert example_batch.dims[\"time\"] \u003e= 3 # 2 for input, \u003e=1 for targets\n",
438
+ "\n",
439
+ "print(\", \".join([f\"{k}: {v}\" for k, v in parse_file_parts(dataset_file.value.removesuffix(\".nc\")).items()]))\n",
440
+ "\n",
441
+ "example_batch"
442
+ ]
443
+ },
444
+ {
445
+ "cell_type": "code",
446
+ "execution_count": null,
447
+ "metadata": {
448
+ "cellView": "form",
449
+ "id": "lXjFvdE6qStr"
450
+ },
451
+ "outputs": [],
452
+ "source": [
453
+ "# @title Choose data to plot\n",
454
+ "\n",
455
+ "plot_example_variable = widgets.Dropdown(\n",
456
+ " options=example_batch.data_vars.keys(),\n",
457
+ " value=\"2m_temperature\",\n",
458
+ " description=\"Variable\")\n",
459
+ "plot_example_level = widgets.Dropdown(\n",
460
+ " options=example_batch.coords[\"level\"].values,\n",
461
+ " value=500,\n",
462
+ " description=\"Level\")\n",
463
+ "plot_example_robust = widgets.Checkbox(value=True, description=\"Robust\")\n",
464
+ "plot_example_max_steps = widgets.IntSlider(\n",
465
+ " min=1, max=example_batch.dims[\"time\"], value=example_batch.dims[\"time\"],\n",
466
+ " description=\"Max steps\")\n",
467
+ "\n",
468
+ "widgets.VBox([\n",
469
+ " plot_example_variable,\n",
470
+ " plot_example_level,\n",
471
+ " plot_example_robust,\n",
472
+ " plot_example_max_steps,\n",
473
+ " widgets.Label(value=\"Run the next cell to plot the data. Rerunning this cell clears your selection.\")\n",
474
+ "])"
475
+ ]
476
+ },
477
+ {
478
+ "cell_type": "code",
479
+ "execution_count": null,
480
+ "metadata": {
481
+ "cellView": "form",
482
+ "id": "kIK-EgMdkHtk"
483
+ },
484
+ "outputs": [],
485
+ "source": [
486
+ "# @title Plot example data\n",
487
+ "\n",
488
+ "plot_size = 7\n",
489
+ "\n",
490
+ "data = {\n",
491
+ " \" \": scale(select(example_batch, plot_example_variable.value, plot_example_level.value, plot_example_max_steps.value),\n",
492
+ " robust=plot_example_robust.value),\n",
493
+ "}\n",
494
+ "fig_title = plot_example_variable.value\n",
495
+ "if \"level\" in example_batch[plot_example_variable.value].coords:\n",
496
+ " fig_title += f\" at {plot_example_level.value} hPa\"\n",
497
+ "\n",
498
+ "plot_data(data, fig_title, plot_size, plot_example_robust.value)\n"
499
+ ]
500
+ },
501
+ {
502
+ "cell_type": "code",
503
+ "execution_count": null,
504
+ "metadata": {
505
+ "cellView": "form",
506
+ "id": "tPVy1GHokHtk"
507
+ },
508
+ "outputs": [],
509
+ "source": [
510
+ "# @title Choose training and eval data to extract\n",
511
+ "train_steps = widgets.IntSlider(\n",
512
+ " value=1, min=1, max=example_batch.sizes[\"time\"]-2, description=\"Train steps\")\n",
513
+ "eval_steps = widgets.IntSlider(\n",
514
+ " value=example_batch.sizes[\"time\"]-2, min=1, max=example_batch.sizes[\"time\"]-2, description=\"Eval steps\")\n",
515
+ "\n",
516
+ "widgets.VBox([\n",
517
+ " train_steps,\n",
518
+ " eval_steps,\n",
519
+ " widgets.Label(value=\"Run the next cell to extract the data. Rerunning this cell clears your selection.\")\n",
520
+ "])"
521
+ ]
522
+ },
523
+ {
524
+ "cell_type": "code",
525
+ "execution_count": null,
526
+ "metadata": {
527
+ "cellView": "form",
528
+ "id": "Ogp4vTBvsgSt"
529
+ },
530
+ "outputs": [],
531
+ "source": [
532
+ "# @title Extract training and eval data\n",
533
+ "\n",
534
+ "train_inputs, train_targets, train_forcings = data_utils.extract_inputs_targets_forcings(\n",
535
+ " example_batch, target_lead_times=slice(\"6h\", f\"{train_steps.value*6}h\"),\n",
536
+ " **dataclasses.asdict(task_config))\n",
537
+ "\n",
538
+ "eval_inputs, eval_targets, eval_forcings = data_utils.extract_inputs_targets_forcings(\n",
539
+ " example_batch, target_lead_times=slice(\"6h\", f\"{eval_steps.value*6}h\"),\n",
540
+ " **dataclasses.asdict(task_config))\n",
541
+ "\n",
542
+ "print(\"All Examples: \", example_batch.dims.mapping)\n",
543
+ "print(\"Train Inputs: \", train_inputs.dims.mapping)\n",
544
+ "print(\"Train Targets: \", train_targets.dims.mapping)\n",
545
+ "print(\"Train Forcings:\", train_forcings.dims.mapping)\n",
546
+ "print(\"Eval Inputs: \", eval_inputs.dims.mapping)\n",
547
+ "print(\"Eval Targets: \", eval_targets.dims.mapping)\n",
548
+ "print(\"Eval Forcings: \", eval_forcings.dims.mapping)\n"
549
+ ]
550
+ },
551
+ {
552
+ "cell_type": "code",
553
+ "execution_count": null,
554
+ "metadata": {
555
+ "cellView": "form",
556
+ "id": "Q--ZRhpTdI2o"
557
+ },
558
+ "outputs": [],
559
+ "source": [
560
+ "# @title Load normalization data\n",
561
+ "\n",
562
+ "with gcs_bucket.blob(\"stats/diffs_stddev_by_level.nc\").open(\"rb\") as f:\n",
563
+ " diffs_stddev_by_level = xarray.load_dataset(f).compute()\n",
564
+ "with gcs_bucket.blob(\"stats/mean_by_level.nc\").open(\"rb\") as f:\n",
565
+ " mean_by_level = xarray.load_dataset(f).compute()\n",
566
+ "with gcs_bucket.blob(\"stats/stddev_by_level.nc\").open(\"rb\") as f:\n",
567
+ " stddev_by_level = xarray.load_dataset(f).compute()"
568
+ ]
569
+ },
570
+ {
571
+ "cell_type": "code",
572
+ "execution_count": null,
573
+ "metadata": {
574
+ "cellView": "form",
575
+ "id": "ke2zQyuT_sMA"
576
+ },
577
+ "outputs": [],
578
+ "source": [
579
+ "# @title Build jitted functions, and possibly initialize random weights\n",
580
+ "\n",
581
+ "def construct_wrapped_graphcast(\n",
582
+ " model_config: graphcast.ModelConfig,\n",
583
+ " task_config: graphcast.TaskConfig):\n",
584
+ " \"\"\"Constructs and wraps the GraphCast Predictor.\"\"\"\n",
585
+ " # Deeper one-step predictor.\n",
586
+ " predictor = graphcast.GraphCast(model_config, task_config)\n",
587
+ "\n",
588
+ " # Modify inputs/outputs to `graphcast.GraphCast` to handle conversion to\n",
589
+ " # from/to float32 to/from BFloat16.\n",
590
+ " predictor = casting.Bfloat16Cast(predictor)\n",
591
+ "\n",
592
+ " # Modify inputs/outputs to `casting.Bfloat16Cast` so the casting to/from\n",
593
+ " # BFloat16 happens after applying normalization to the inputs/targets.\n",
594
+ " predictor = normalization.InputsAndResiduals(\n",
595
+ " predictor,\n",
596
+ " diffs_stddev_by_level=diffs_stddev_by_level,\n",
597
+ " mean_by_level=mean_by_level,\n",
598
+ " stddev_by_level=stddev_by_level)\n",
599
+ "\n",
600
+ " # Wraps everything so the one-step model can produce trajectories.\n",
601
+ " predictor = autoregressive.Predictor(predictor, gradient_checkpointing=True)\n",
602
+ " return predictor\n",
603
+ "\n",
604
+ "\n",
605
+ "@hk.transform_with_state\n",
606
+ "def run_forward(model_config, task_config, inputs, targets_template, forcings):\n",
607
+ " predictor = construct_wrapped_graphcast(model_config, task_config)\n",
608
+ " return predictor(inputs, targets_template=targets_template, forcings=forcings)\n",
609
+ "\n",
610
+ "\n",
611
+ "@hk.transform_with_state\n",
612
+ "def loss_fn(model_config, task_config, inputs, targets, forcings):\n",
613
+ " predictor = construct_wrapped_graphcast(model_config, task_config)\n",
614
+ " loss, diagnostics = predictor.loss(inputs, targets, forcings)\n",
615
+ " return xarray_tree.map_structure(\n",
616
+ " lambda x: xarray_jax.unwrap_data(x.mean(), require_jax=True),\n",
617
+ " (loss, diagnostics))\n",
618
+ "\n",
619
+ "def grads_fn(params, state, model_config, task_config, inputs, targets, forcings):\n",
620
+ " def _aux(params, state, i, t, f):\n",
621
+ " (loss, diagnostics), next_state = loss_fn.apply(\n",
622
+ " params, state, jax.random.PRNGKey(0), model_config, task_config,\n",
623
+ " i, t, f)\n",
624
+ " return loss, (diagnostics, next_state)\n",
625
+ " (loss, (diagnostics, next_state)), grads = jax.value_and_grad(\n",
626
+ " _aux, has_aux=True)(params, state, inputs, targets, forcings)\n",
627
+ " return loss, diagnostics, next_state, grads\n",
628
+ "\n",
629
+ "# Jax doesn't seem to like passing configs as args through the jit. Passing it\n",
630
+ "# in via partial (instead of capture by closure) forces jax to invalidate the\n",
631
+ "# jit cache if you change configs.\n",
632
+ "def with_configs(fn):\n",
633
+ " return functools.partial(\n",
634
+ " fn, model_config=model_config, task_config=task_config)\n",
635
+ "\n",
636
+ "# Always pass params and state, so the usage below are simpler\n",
637
+ "def with_params(fn):\n",
638
+ " return functools.partial(fn, params=params, state=state)\n",
639
+ "\n",
640
+ "# Our models aren't stateful, so the state is always empty, so just return the\n",
641
+ "# predictions. This is requiredy by our rollout code, and generally simpler.\n",
642
+ "def drop_state(fn):\n",
643
+ " return lambda **kw: fn(**kw)[0]\n",
644
+ "\n",
645
+ "init_jitted = jax.jit(with_configs(run_forward.init))\n",
646
+ "\n",
647
+ "if params is None:\n",
648
+ " params, state = init_jitted(\n",
649
+ " rng=jax.random.PRNGKey(0),\n",
650
+ " inputs=train_inputs,\n",
651
+ " targets_template=train_targets,\n",
652
+ " forcings=train_forcings)\n",
653
+ "\n",
654
+ "loss_fn_jitted = drop_state(with_params(jax.jit(with_configs(loss_fn.apply))))\n",
655
+ "grads_fn_jitted = with_params(jax.jit(with_configs(grads_fn)))\n",
656
+ "run_forward_jitted = drop_state(with_params(jax.jit(with_configs(\n",
657
+ " run_forward.apply))))"
658
+ ]
659
+ },
660
+ {
661
+ "cell_type": "markdown",
662
+ "metadata": {
663
+ "id": "VBNutliiCyqA"
664
+ },
665
+ "source": [
666
+ "# Run the model\n",
667
+ "\n",
668
+ "Note that the cell below may take a while (possibly minutes) to run the first time you execute them, because this will include the time it takes for the code to compile. The second time running will be significantly faster.\n",
669
+ "\n",
670
+ "This use the python loop to iterate over prediction steps, where the 1-step prediction is jitted. This has lower memory requirements than the training steps below, and should enable making prediction with the small GraphCast model on 1 deg resolution data for 4 steps."
671
+ ]
672
+ },
673
+ {
674
+ "cell_type": "code",
675
+ "execution_count": null,
676
+ "metadata": {
677
+ "cellView": "form",
678
+ "id": "7obeY9i9oTtD"
679
+ },
680
+ "outputs": [],
681
+ "source": [
682
+ "# @title Autoregressive rollout (loop in python)\n",
683
+ "\n",
684
+ "assert model_config.resolution in (0, 360. / eval_inputs.sizes[\"lon\"]), (\n",
685
+ " \"Model resolution doesn't match the data resolution. You likely want to \"\n",
686
+ " \"re-filter the dataset list, and download the correct data.\")\n",
687
+ "\n",
688
+ "print(\"Inputs: \", eval_inputs.dims.mapping)\n",
689
+ "print(\"Targets: \", eval_targets.dims.mapping)\n",
690
+ "print(\"Forcings:\", eval_forcings.dims.mapping)\n",
691
+ "\n",
692
+ "predictions = rollout.chunked_prediction(\n",
693
+ " run_forward_jitted,\n",
694
+ " rng=jax.random.PRNGKey(0),\n",
695
+ " inputs=eval_inputs,\n",
696
+ " targets_template=eval_targets * np.nan,\n",
697
+ " forcings=eval_forcings)\n",
698
+ "predictions"
699
+ ]
700
+ },
701
+ {
702
+ "cell_type": "code",
703
+ "execution_count": null,
704
+ "metadata": {
705
+ "cellView": "form",
706
+ "id": "ft298eZskHtn"
707
+ },
708
+ "outputs": [],
709
+ "source": [
710
+ "# @title Choose predictions to plot\n",
711
+ "\n",
712
+ "plot_pred_variable = widgets.Dropdown(\n",
713
+ " options=predictions.data_vars.keys(),\n",
714
+ " value=\"2m_temperature\",\n",
715
+ " description=\"Variable\")\n",
716
+ "plot_pred_level = widgets.Dropdown(\n",
717
+ " options=predictions.coords[\"level\"].values,\n",
718
+ " value=500,\n",
719
+ " description=\"Level\")\n",
720
+ "plot_pred_robust = widgets.Checkbox(value=True, description=\"Robust\")\n",
721
+ "plot_pred_max_steps = widgets.IntSlider(\n",
722
+ " min=1,\n",
723
+ " max=predictions.dims[\"time\"],\n",
724
+ " value=predictions.dims[\"time\"],\n",
725
+ " description=\"Max steps\")\n",
726
+ "\n",
727
+ "widgets.VBox([\n",
728
+ " plot_pred_variable,\n",
729
+ " plot_pred_level,\n",
730
+ " plot_pred_robust,\n",
731
+ " plot_pred_max_steps,\n",
732
+ " widgets.Label(value=\"Run the next cell to plot the predictions. Rerunning this cell clears your selection.\")\n",
733
+ "])"
734
+ ]
735
+ },
736
+ {
737
+ "cell_type": "code",
738
+ "execution_count": null,
739
+ "metadata": {
740
+ "cellView": "form",
741
+ "id": "_tTdx6fmmj1I"
742
+ },
743
+ "outputs": [],
744
+ "source": [
745
+ "# @title Plot predictions\n",
746
+ "\n",
747
+ "plot_size = 5\n",
748
+ "plot_max_steps = min(predictions.dims[\"time\"], plot_pred_max_steps.value)\n",
749
+ "\n",
750
+ "data = {\n",
751
+ " \"Targets\": scale(select(eval_targets, plot_pred_variable.value, plot_pred_level.value, plot_max_steps), robust=plot_pred_robust.value),\n",
752
+ " \"Predictions\": scale(select(predictions, plot_pred_variable.value, plot_pred_level.value, plot_max_steps), robust=plot_pred_robust.value),\n",
753
+ " \"Diff\": scale((select(eval_targets, plot_pred_variable.value, plot_pred_level.value, plot_max_steps) -\n",
754
+ " select(predictions, plot_pred_variable.value, plot_pred_level.value, plot_max_steps)),\n",
755
+ " robust=plot_pred_robust.value, center=0),\n",
756
+ "}\n",
757
+ "fig_title = plot_pred_variable.value\n",
758
+ "if \"level\" in predictions[plot_pred_variable.value].coords:\n",
759
+ " fig_title += f\" at {plot_pred_level.value} hPa\"\n",
760
+ "\n",
761
+ "plot_data(data, fig_title, plot_size, plot_pred_robust.value)\n"
762
+ ]
763
+ },
764
+ {
765
+ "cell_type": "markdown",
766
+ "metadata": {
767
+ "id": "Pa78b64bLYe1"
768
+ },
769
+ "source": [
770
+ "# Train the model\n",
771
+ "\n",
772
+ "The following operations require a large amount of memory and, depending on the accelerator being used, will only fit the very small \"random\" model on low resolution data. It uses the number of training steps selected above.\n",
773
+ "\n",
774
+ "The first time executing the cell takes more time, as it include the time to jit the function."
775
+ ]
776
+ },
777
+ {
778
+ "cell_type": "code",
779
+ "execution_count": null,
780
+ "metadata": {
781
+ "cellView": "form",
782
+ "id": "Nv-u3dAP7IRZ"
783
+ },
784
+ "outputs": [],
785
+ "source": [
786
+ "# @title Loss computation (autoregressive loss over multiple steps)\n",
787
+ "loss, diagnostics = loss_fn_jitted(\n",
788
+ " rng=jax.random.PRNGKey(0),\n",
789
+ " inputs=train_inputs,\n",
790
+ " targets=train_targets,\n",
791
+ " forcings=train_forcings)\n",
792
+ "print(\"Loss:\", float(loss))"
793
+ ]
794
+ },
795
+ {
796
+ "cell_type": "code",
797
+ "execution_count": null,
798
+ "metadata": {
799
+ "cellView": "form",
800
+ "id": "mBNFq1IGZNLz"
801
+ },
802
+ "outputs": [],
803
+ "source": [
804
+ "# @title Gradient computation (backprop through time)\n",
805
+ "loss, diagnostics, next_state, grads = grads_fn_jitted(\n",
806
+ " inputs=train_inputs,\n",
807
+ " targets=train_targets,\n",
808
+ " forcings=train_forcings)\n",
809
+ "mean_grad = np.mean(jax.tree_util.tree_flatten(jax.tree_util.tree_map(lambda x: np.abs(x).mean(), grads))[0])\n",
810
+ "print(f\"Loss: {loss:.4f}, Mean |grad|: {mean_grad:.6f}\")"
811
+ ]
812
+ },
813
+ {
814
+ "cell_type": "code",
815
+ "execution_count": null,
816
+ "metadata": {
817
+ "cellView": "form",
818
+ "id": "J4FJFKWD8Loz"
819
+ },
820
+ "outputs": [],
821
+ "source": [
822
+ "# @title Autoregressive rollout (keep the loop in JAX)\n",
823
+ "print(\"Inputs: \", train_inputs.dims.mapping)\n",
824
+ "print(\"Targets: \", train_targets.dims.mapping)\n",
825
+ "print(\"Forcings:\", train_forcings.dims.mapping)\n",
826
+ "\n",
827
+ "predictions = run_forward_jitted(\n",
828
+ " rng=jax.random.PRNGKey(0),\n",
829
+ " inputs=train_inputs,\n",
830
+ " targets_template=train_targets * np.nan,\n",
831
+ " forcings=train_forcings)\n",
832
+ "predictions"
833
+ ]
834
+ }
835
+ ],
836
+ "metadata": {
837
+ "colab": {
838
+ "name": "GraphCast",
839
+ "private_outputs": true,
840
+ "provenance": [],
841
+ "toc_visible": true
842
+ },
843
+ "kernelspec": {
844
+ "display_name": "Python 3",
845
+ "name": "python3"
846
+ },
847
+ "language_info": {
848
+ "name": "python"
849
+ }
850
+ },
851
+ "nbformat": 4,
852
+ "nbformat_minor": 0
853
+ }
setup.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 DeepMind Technologies Limited.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS-IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Module setuptools script."""
15
+
16
+ from setuptools import setup
17
+
18
+ description = (
19
+ "GraphCast: Learning skillful medium-range global weather forecasting"
20
+ )
21
+
22
+ setup(
23
+ name="graphcast",
24
+ version="0.1",
25
+ description=description,
26
+ long_description=description,
27
+ author="DeepMind",
28
+ license="Apache License, Version 2.0",
29
+ keywords="GraphCast Weather Prediction",
30
+ url="https://github.com/deepmind/graphcast",
31
+ packages=["graphcast"],
32
+ install_requires=[
33
+ "cartopy",
34
+ "chex",
35
+ "colabtools",
36
+ "dask",
37
+ "dm-haiku",
38
+ "dm-tree",
39
+ "jax",
40
+ "jraph",
41
+ "matplotlib",
42
+ "numpy",
43
+ "pandas",
44
+ "rtree",
45
+ "scipy",
46
+ "trimesh",
47
+ "typing_extensions",
48
+ "xarray",
49
+ ],
50
+ classifiers=[
51
+ "Development Status :: 3 - Alpha",
52
+ "Intended Audience :: Science/Research",
53
+ "License :: OSI Approved :: Apache Software License",
54
+ "Operating System :: POSIX :: Linux",
55
+ "Programming Language :: Python :: 3.10",
56
+ "Programming Language :: Python :: 3.11",
57
+ "Topic :: Scientific/Engineering :: Artificial Intelligence",
58
+ "Topic :: Scientific/Engineering :: Atmospheric Science",
59
+ "Topic :: Scientific/Engineering :: Physics",
60
+ ],
61
+ )