GTimothee commited on
Commit
c6589e1
1 Parent(s): 7f8e333

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -164
README.md CHANGED
@@ -5,200 +5,81 @@ base_model: codellama/CodeLlama-7b-hf
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
 
 
19
 
20
  - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
  - **Model type:** [More Information Needed]
24
  - **Language(s) (NLP):** [More Information Needed]
25
  - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
- ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
 
 
 
 
 
 
 
 
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
 
112
 
113
- [More Information Needed]
114
 
115
- #### Factors
 
 
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
118
 
119
- [More Information Needed]
 
120
 
121
- #### Metrics
 
 
 
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
 
 
 
126
 
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
 
 
201
 
202
- ### Framework versions
 
 
 
203
 
204
- - PEFT 0.8.2
 
 
5
 
6
  # Model Card for Model ID
7
 
8
+ 4 bit general purpose text-to-SQL model.
9
 
10
+ Takes 5677MiB of GPU memory.
11
 
12
 
13
  ## Model Details
14
 
15
  ### Model Description
16
 
17
+ Provide the CREATE statement of the target table(s) in the context of your prompt and ask a question to your database. The model outputs a query to answer the question.
 
18
 
19
+ Data used for fine tuning: https://huggingface.co/datasets/b-mc2/sql-create-context
20
 
21
  - **Developed by:** [More Information Needed]
 
 
22
  - **Model type:** [More Information Needed]
23
  - **Language(s) (NLP):** [More Information Needed]
24
  - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** codellama/CodeLlama-7b-hf
 
 
 
 
 
 
 
 
26
 
27
  ## Uses
28
 
29
+ This model can be coupled with a chat model like llama2-chat to convert the output into a text answer.
30
 
31
  ### Direct Use
32
 
33
+ ```python
34
+ from peft import AutoPeftModelForCausalLM
35
+ from transformers import AutoTokenizer, AutoModelForCausalLM
36
+ import torch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
 
38
 
39
+ # load model
40
+ base_model = "GTimothee/sql-code-llama-4bits"
41
+ model = AutoModelForCausalLM.from_pretrained(
42
+ base_model,
43
+ load_in_4bit=True,
44
+ torch_dtype=torch.float16,
45
+ device_map="auto",
46
+ )
47
+ model.eval()
48
 
49
+ # load tokenizer
50
+ tokenizer = AutoTokenizer.from_pretrained("codellama/CodeLlama-7b-hf")
51
 
52
+ eval_prompt = """You are a powerful text-to-SQL model. Your job is to answer questions about a database. You are given a question and context regarding one or more tables.
53
 
54
+ You must output the SQL query that answers the question.
55
+ ### Input:
56
+ Which Class has a Frequency MHz larger than 91.5, and a City of license of hyannis, nebraska?
57
 
58
+ ### Context:
59
+ CREATE TABLE table_name_12 (class VARCHAR, frequency_mhz VARCHAR, city_of_license VARCHAR)
60
 
61
+ ### Response:
62
+ """
63
 
64
+ model_input = tokenizer(eval_prompt, return_tensors="pt").to("cuda")
65
+ with torch.no_grad():
66
+ print(tokenizer.decode(model.generate(**model_input, max_new_tokens=100)[0], skip_special_tokens=True))
67
+ ```
68
 
69
+ Outputs:
70
 
71
+ ```python
72
+ ### Response:
73
+ SELECT class FROM table_name_12 WHERE frequency_mhz > 91.5 AND city_of_license = "hyannis, nebraska"
74
+ ```
75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
 
77
+ ## Bias, Risks, and Limitations
78
 
79
+ - potential security issues if there is a malicious use. If you execute blindly the SQL queries that are being generated by end users you could lose data, leak information etc.
80
+ - may be mistaken depending on the way the prompt has been written.
81
+
82
+ ### Recommendations
83
 
84
+ - Make sure that you check the generated SQL before applying it if the model is used by end users directly.
85
+ - The model works well when used on simple tables and simple queries. If possible, try to break a complex query into multiple simple queries.