NamCyan's picture
first commit
ccf8da6
import torch
from typing import Dict, List, Any
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
# check for GPU
device = 0 if torch.cuda.is_available() else -1
# id2label = {
# 0: "Inconsistency",
# 1: "Consistency"
# }
class EndpointHandler:
def __init__(self, path=""):
# load the model
tokenizer = AutoTokenizer.from_pretrained(path)
model = AutoModelForSequenceClassification.from_pretrained(path, low_cpu_mem_usage=True)
# create inference pipeline
self.pipeline = pipeline("text-classification", model=model, tokenizer=tokenizer, device=device)
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
inputs = data.pop("inputs", data)
parameters = data.pop("parameters", None)
# pass inputs with all kwargs in data
if parameters is not None:
prediction = self.pipeline(inputs, **parameters)
else:
prediction = self.pipeline(inputs)
# postprocess the prediction
return prediction