Frorozcol commited on
Commit
0d0a900
1 Parent(s): 69205ea

End of training

Browse files
Files changed (2) hide show
  1. README.md +18 -17
  2. model.safetensors +1 -1
README.md CHANGED
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.82
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.6017
36
- - Accuracy: 0.82
37
 
38
  ## Model description
39
 
@@ -60,26 +60,27 @@ The following hyperparameters were used during training:
60
  - lr_scheduler_type: linear
61
  - lr_scheduler_warmup_ratio: 0.1
62
  - num_epochs: 10
 
63
 
64
  ### Training results
65
 
66
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
- | 2.0266 | 1.0 | 113 | 1.7851 | 0.59 |
69
- | 1.3016 | 2.0 | 226 | 1.1678 | 0.71 |
70
- | 1.0307 | 3.0 | 339 | 0.9306 | 0.75 |
71
- | 0.882 | 4.0 | 452 | 0.8685 | 0.74 |
72
- | 0.5489 | 5.0 | 565 | 0.7226 | 0.76 |
73
- | 0.3585 | 6.0 | 678 | 0.6712 | 0.79 |
74
- | 0.4149 | 7.0 | 791 | 0.6003 | 0.82 |
75
- | 0.119 | 8.0 | 904 | 0.5951 | 0.83 |
76
- | 0.2617 | 9.0 | 1017 | 0.5830 | 0.83 |
77
- | 0.0992 | 10.0 | 1130 | 0.6017 | 0.82 |
78
 
79
 
80
  ### Framework versions
81
 
82
- - Transformers 4.31.0
83
- - Pytorch 2.0.1+cu118
84
- - Datasets 2.14.4
85
- - Tokenizers 0.13.3
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.83
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.6551
36
+ - Accuracy: 0.83
37
 
38
  ## Model description
39
 
 
60
  - lr_scheduler_type: linear
61
  - lr_scheduler_warmup_ratio: 0.1
62
  - num_epochs: 10
63
+ - mixed_precision_training: Native AMP
64
 
65
  ### Training results
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 1.9627 | 1.0 | 113 | 1.9008 | 0.51 |
70
+ | 1.2185 | 2.0 | 226 | 1.2541 | 0.68 |
71
+ | 0.8868 | 3.0 | 339 | 1.0025 | 0.7 |
72
+ | 0.6438 | 4.0 | 452 | 0.8160 | 0.77 |
73
+ | 0.4255 | 5.0 | 565 | 0.7545 | 0.79 |
74
+ | 0.3223 | 6.0 | 678 | 0.6584 | 0.82 |
75
+ | 0.2756 | 7.0 | 791 | 0.7826 | 0.76 |
76
+ | 0.186 | 8.0 | 904 | 0.6439 | 0.82 |
77
+ | 0.1233 | 9.0 | 1017 | 0.6260 | 0.85 |
78
+ | 0.0971 | 10.0 | 1130 | 0.6551 | 0.83 |
79
 
80
 
81
  ### Framework versions
82
 
83
+ - Transformers 4.35.2
84
+ - Pytorch 2.1.0+cu121
85
+ - Datasets 2.16.0
86
+ - Tokenizers 0.15.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2f84634253ed7b2ae5dcfa38e289eb457039e13d9a077f15103ad83f68841b10
3
  size 94771728
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dde1cb653a318506afff0f1e40fcdfd56b45cd94742f3cef1c59fe735941baf2
3
  size 94771728