
Second Language (Arabic) Acquisition of LLMs
via Progressive Vocabulary Expansion

Jianqing Zhu†1, Huang Huang†2, Zhihang Lin†3, Juhao Liang†2,3, Zhengyang Tang†2,3,
Khalid Almubarak4, Abdulmohsen Alharthik1, Bang An1, Juncai He1, Xiangbo Wu2,

Fei Yu3, Junying Chen2,3, Zhuoheng Ma3, Yuhao Du3, He Zhang3, Emad A. Alghamdi4,
Lian Zhang2, Ruoyu Sun2,3, Haizhou Li2,3, Benyou Wang*2,3, Jinchao Xu1

1 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
2 Shenzhen Research Institue of Big Data, Shenzhen, China
3 The Chinese University of Hong Kong, Shenzhen, China

4 King Abdulaziz University, Jeddah, Saudi Arabia
Abstract

This paper addresses the critical need for de-
mocratizing large language models (LLM) in
the Arab world, a region that has seen slower
progress in developing models comparable to
state-of-the-art offerings like GPT-4 or Chat-
GPT 3.5, due to a predominant focus on main-
stream languages (e.g., English and Chinese).
One practical objective for an Arabic LLM is
to utilize an Arabic-specific vocabulary for the
tokenizer that could speed up decoding. How-
ever, using a different vocabulary often leads to
a degradation of learned knowledge since many
words are initially out-of-vocabulary (OOV)
when training starts. Inspired by the vocab-
ulary learning during Second Language (Ara-
bic) Acquisition for humans, the released AraL-
LaMA employs progressive vocabulary expan-
sion, which is implemented by a modified BPE
algorithm that progressively extends the Ara-
bic subwords in its dynamic vocabulary during
training, thereby balancing the OOV ratio at
every stage. The ablation study demonstrated
the effectiveness of Progressive Vocabulary Ex-
pansion. Moreover, AraLLaMA achieves de-
cent performance comparable to the best Ara-
bic LLMs across a variety of Arabic bench-
marks. Models, training data, benchmarks, and
codes will be all open-sourced.

1 Introduction

In the evolving landscape of large language mod-
els (LLMs), the predominant focus has been on
English and Chinese. This focus has left other lin-
guistic communities, notably the Arab world, with
slower progress in developing comparable mod-
els. Within the Arab world 1, the development of
models such as Jais (Sengupta et al., 2023) and
AceGPT (Huang et al., 2023a) marks a significant

*Benyou Wang is the corresponding author.
† indicates that the three authors contributed to this work
equally.

1The Arab World comprises a large group of countries,
mainly located in Western Asia and Northern Africa.

step forward, yet these models do not rival the
capabilities of state-of-the-art models like GPT-4
or even ChatGPT 3.5. In line with the democra-
tization (Touvron et al., 2023), our development
of Arabic LLMs focuses on language adaptation
settings that utilize existing standard LLM archi-
tectures (like LLaMA) and well-trained weights,
thereby saving computing resources and ensuring
compatibility.

The core challenge in language adaption for
English-centric LLMs for a second language is
about vocabulary expansion (Touvron et al., 2023;
Cui et al., 2023; Huang et al., 2023b; Zhao et al.,
2024). A case in point is AceGPT (Huang et al.,
2023b), which struggles with slow decoding speeds
due to its inability to adapt to the Arabic vocabu-
lary. It decodes Arabic words into sequences of
alphabetical letters rather than at a more efficient
granularity, such as Arabic subwords. This ineffi-
ciency significantly limits its broader applicability,
despite its performance being nearly on par with
ChatGPT 3.5 in some benchmarks. The primary
challenge associated with vocabulary expansion is
the risk that abrupt increases can lead to a high inci-
dence of out-of-vocabulary (OOV) words—words
or subwords that are not present in the model’s cur-
rent vocabulary. Such a surge in OOV words can
compromise the linguistic knowledge embedded
within the core models. Addressing this issue re-
quires a considerable volume of pre-training data
to restore and maintain the model’s linguistic capa-
bilities effectively.

The core philosophy behind AraLLaMA is in-
spired by the process of vocabulary learning in hu-
man Second Language Acquisition, emphasizing
that individuals typically expand their vocabulary
gradually through incremental learning, rather than
through instantaneous acquisition. AraLLaMA pro-
gressively extends the Arabic subwords in its vo-
cabulary during pre-training, effectively reducing
the ratio of OOV words at every stage. AraLLaMA



initialized with LLaMA2 13B, not only seamlessly
preserves the inherent knowledge embedded in
LLaMA2 13B but also facilitates a smooth transfer
of knowledge from English to Arabic. Ablation on
TinyLLaMA (Zhang et al., 2024) demonstrated the
effectiveness of the proposed progressive vocabu-
lary expansion, see Section 6.1.

Followed by extensive instruction tuning, AraL-
LaMA achieves decent performance comparable
to the best Arabic LLMs across various Arabic
benchmarks. The contributions of this work are
three-fold: 1) We introduce Progressive Vocabu-
lary Expansion, utilizing a modified Byte Pair En-
coding (BPE) algorithm inspired by human second
language acquisition, and demonstrate its effec-
tiveness. 2) We present AraLLaMA, a pioneering
open-source Arabic Large Language Model that
decodes Arabic texts three times faster than its pre-
decessor (Huang et al., 2023b) while delivering
superior performance. 3) We provide the commu-
nity with access to the complete data processing
pipeline, pre-training/fine-tuning data, and model
weights. AraLLaMA is compatible with the most
popular LLM architecture (i.e., LLaMA) and can
be seamlessly integrated into most LLM applica-
tions.

2 Motivation: Second Language
Acquisition for Humans and LLMs

2.1 Cognitively-inspired Motivation: Second
Language Acquisition for Humans

Definition 1. Second Language Acquisi-
tion (SLA) refers to the process by which
people learn a language other than their native
language (Krashen, 1981). SLA can occur through
formal instruction in an educational setting or
informally through social interaction and exposure
to the language in natural settings.

In learning a second language (L2), learners pass
through several developmental stages as they gain
proficiency in L2, including the acquisition of pho-
netics, vocabulary, grammar, and pragmatic use.
Of these language skills, vocabulary acquisition is
crucial for language learning. Several studies have
posited that L2 learners mostly learn new words in-
cidentally (Ramos and Dario, 2015; Nation, 2001).
This suggests that an individual might gradually
master a word or a set of words in an unconscious
manner. This leads to a phenomenon:

Phenomenon 1. In Second Language Acquisition,
human individuals typically expand their vocabu-

lary gradually, in a fashion of incremental learning
rather than an instantaneous acquisition.

A formal description of levels of language devel-
opment is laid out in the Common European Frame-
work of Reference for Languages (CEFR) 2. Ta-
ble 6 (show in Appendix B) showcases the required
number of vocabulary size for different CEFR lev-
els. The CEFR provides detailed descriptions of
the skills language learners must achieve to effec-
tively communicate. This can be taken as evidence
of the progressive nature of vocabulary acquisition.

2.2 Problem Definition: Second Language
Acquisition for LLMs

Language adaption The focus on developing
large-scale open-source language models for high-
resource languages like English and Chinese has
unintentionally marginalized low-resource lan-
guages, despite there being about 7,000 languages
in use globally. The lack of data and computational
resources makes it challenging to develop effective
models for these languages. A common practice
is to enhance existing models by adding special-
ized data for these underrepresented languages (Cui
et al., 2023; Huang et al., 2023b; Zhao et al., 2024),
a.k.a, language adaption.

Vocabulary expansion in language adaption
As a preliminary study, we identified Arabic to-
kens from the LLaMA2 vocabulary using regular
expressions. It was observed that the LLaMA2 vo-
cabulary only includes the basic characters of the
Arabic language, resulting in relatively slow en-
coding and decoding speeds compared to English.
During domain adaption, it is crucial for vocabu-
lary expansion for the second language, since it
could significantly speed up decoding speeds as
the number of decoded tokens is reduced due to
the adapted vocabulary. Furthermore, although
augmenting the existing vocabulary with tokens
from additional languages, followed by training on
corresponding language corpora, appears to be a
logical strategy, empirical evidence suggests that
the gains from this method are modest. This insight
underscores the complexity of enhancing support

2The Common European Framework of Reference for Lan-
guages (CEFR) is a standard developed by the European Com-
mission and officially published in 2001, with a revised edition
in 2003. The framework serves as a guideline for language
teaching and assessment across European Union countries,
aiming to provide a common foundation and reference for
curriculum design, syllabus development, language testing,
and textbook compilation in Europe.
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Figure 1: Second language acquisition for human, an English-speaking Child’s Journey to Arabic Fluency, From
Basic Vocabulary to Cultural Proficiency

for low-resource languages within the framework
of current large-scale language models.

Research question Therefore, inspired by the
humans’ Second Language Acquisition, we argue
for

Is it beneficial to adopt progressive vo-
cabulary learning in language adaption
of LLMs?

3 Methodology: Progressive Vocabulary
Expansion for Language Adaption

The standard Byte Pair Encoding (BPE) process ex-
pands the initial vocabulary by iteratively merging
frequent character pairs or sequences from train-
ing data into new tokens, until reaching a desired
size. Training commences once this process is
completed, rendering the vocabulary static. To in-
vestigate the posed question, this section introduces
Progressive Vocabulary Expansion. This method in-
crementally incorporates new tokens in a dynamic
vocabulary during training, mimicking a human-
like paradigm of digesting and then learning during
time.

In contrast to BPE algorithm (Sennrich et al.,
2015) that uses a static vocabulary during LLM
training, we propose an Incremental Byte Pair
Encoding (I-BPE) method that uses dynamic vo-
cabulary to implement Progressive Vocabulary Ex-
pansion, see Algorithm 1. Similar to the BPE pro-
cess of repeatedly merging the most frequent pairs,
gradually adding new tokens and training them
equates to introducing new characters or subwords
into the vocabulary, thus expanding and updating
it. New tokens are continually added to the vocabu-
lary until the vocabulary size is equal to the given
number in each stage, and then the model is trained
to adapt to the new vocabulary while increasing the
proportion of corpus corresponding to newly added
tokens. It repeats this expansion and annealing by
gradually increasing both the vocabulary size and

Algorithm 1 Incremental Byte Pair Encoding (I-
BPE) Algorithm

1: Input: (1) Initial vocabulary V ; (2) Vocabu-
lary size at each stage: s0, s1, . . . , sn; (3) Pro-
portion of training corpus for newly added to-
kens at each stage: r0, r1, . . . , rn;

2: Output: Final vocabulary V for model train-
ing and application

3: for i = 0 to n do
4: while |V | < si do
5: Compute frequency of all adjacent to-

ken pairs in V
6: Identify the most frequent token pair

Pfreq

7: Merge Pfreq into a new token Tnew

8: Add Tnew to vocabulary V
9: end while

10: Adjust corpus proportion for newly added
tokens to ri

11: Train model with the updated vocabulary
V until convergence

12: end for
13: Return Finalized vocabulary V

proportion of the corresponding corpus until the vo-
cabulary is expanded to a preset size. This iterative
approach could improve stability during language
adaptation and maintain adaptability to existing
data. Technically, this approach could substantially
reduce the OOV ratio at every step of the training
process, thereby enhancing the model’s capability
to gradually recognize previously unknown words.

As seen in Figure 2, there exist two distinct
strategies for vocabulary expansion: exponential
addition of subwords or uniform addition.

• The uniform expansion involves adding K
tokens at each stage. It results in a total num-
ber of (T − 1) ×K over T stages while the
first stage does not add new tokens.

• The exponential expansion adds new to-



kens exponentially, mimicking the vocabu-
lary learning mechanism observed in humans.
Consistent with the uniform expansion, there
is a stage at the beginning where no new to-
kens are added and then this approach starts
with integrating one new token, with the
number of tokens introduced in each subse-
quent stage doubling, following the sequence
{0, 1, 2, · · · , 2T−2}, until reaching the desired
expansion size.
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Figure 2: The impact on compression ratios for uniform
or exponential vocabulary expansion.

Exponential Expansion vs. Uniform Expansion
We conduct a comparative analysis of the impact
of uniform and exponential vocabulary expansion
strategies on token count using the same corpus.
The encoding process is segmented into 16 distinct
stages, with the token count computed at each stage
using the correspondingly expanded vocabulary.
Figure 2 illustrates the trend in token counts for
both vocabulary expansion methods as the number
of stages progresses, Table 9 describes the changes
in compression ratio and OOV rate at different
stages for the exponential and uniform vocabulary
expansion methods. It can be observed that the
uniform expansion leads to a significant increase
in the compression ratio during the initial stages,
but it becomes saturated later on. This could in-
troduce training instability at the beginning, as it
suddenly encounters a high ratio of new words,
potentially exacerbating catastrophic forgetting in
large language models.

In contrast, exponential growth facilitates a grad-
ual adjustment in the compression ratio, maintain-
ing a lower OOV ratio with fewer subwords, which
offers a more controlled reduction in the compres-
sion ratio as vocabulary size increases. There-
fore, we opt for the exponential addition of sub-
words, as it not only stabilizes the training pro-
cess but also shortens the length of the decoded

sequence by threefold, potentially leading to signif-
icant speedups during both training and inference.
We set the vocabulary size to be 12,800 words, as
this number reaches a saturation point in the com-
pression rate, as shown in Figure 2. To effectively
manage OOV rates, we implemented 16 (log128002 )
stages of vocabulary expansion based on exponen-
tial growth by frequency order.

4 Training

We will discuss the details of data engineering in
Section 4.1, along with additional training details
in Section 4.2.

4.1 Data Engineering

Pre-training Corpora Our pre-training dataset
comprises both Arabic and English corpora. We
employ an array of Arabic corpora encompassing
multiple categories as delineated in Table 7 (shown
in Appendix C). These include a filtered version of
Common Crawl, WebText, and Wikipedia1 sourced
from Joud and BAAI, all of which were subjected
to an additional cleaning process. Moreover, we
gather and methodically purify additional corpora,
namely Wikipedia2, Books, and Newspapers. The
English corpus is sourced from SlimPajama (Sobol-
eva et al., 2023) and Proof-Pile-2 (Azerbayev et al.,
2023).

Incorporating the insights gained from our dis-
cussion on token annealing, this study further
delves into the pre-training process, showcasing the
integral role of the token annealing strategy in shap-
ing our pre-training stages. Our pre-training frame-
work is meticulously segmented into two epochs,
with the inaugural epoch deploying the vocabulary
annealing algorithm to fine-tune data distribution,
as previously delineated. The subsequent epoch
advances with training predicated on the refined
vocabulary. The process of vocabulary expansion
is methodically organized into 16 delineated stages,
each uniquely composed of a calibrated mix of data
from English, Arabic, mathematical, and coding
domains, with the precise ratios detailed in Table
8 (show in Appendix D). A corpus of 30 billion
tokens is employed for training across each stage,
underscoring the extensive scale of our pre-training
efforts.

The strategic design of these stages showcases
a deliberate, phased approach towards the integra-
tion of new tokens. This facilitates a seamless
adaptation of the model to a broad spectrum of data



representations, ensuring a comprehensive under-
standing and engagement with various linguistic
and symbolic nuances. By judiciously modulat-
ing the data composition at every stage—wherein
the percentage of Arabic data steadily increases,
reflecting a focused effort to bolster the model’s
proficiency with Arabic, simultaneously with a cor-
responding decrement in the English data percent-
age—we guarantee the model’s agility and profi-
ciency across a wide linguistic spectrum.

Data for Instruction Tuning After pre-training,
we aim to elicit the knowledge out of AraLLaMA
via instruction tuning. Inspired by GLAN (Li et al.,
2024), we introduce ALAN (Arabic Instruction
Tuning for Language Models). This method uti-
lizes specific topics targeting Arabic knowledge
to generate a vast amount of synthetic instruction
data.

Specifically, we identified 127 critical topics
within Arabic culture, science, and engineering
as our focus. ALAN decomposes these topics into
a structured hierarchy of fields, sub-fields, and in-
dividual disciplines. For each discipline, ALAN
compiles a comprehensive list of subjects and de-
signs a syllabus with specific knowledge points for
each one. Using GPT-4-0613, ALAN has gener-
ated 11,430 subjects and 244,812 detailed knowl-
edge points. We provide more concrete examples
in Appendix G.

Armed with this extensive collection of subjects
and knowledge points, we direct the LLM to create
questions and answers related to these knowledge
concepts. The syllabus consists of several lectures,
each with 2 to 5 knowledge points. To diversify
the knowledge base, we combine knowledge points
from both the same and different lectures to pro-
duce diverse instructions and answers. Addition-
ally, to vary the instruction types, the LLM gener-
ates three kinds of questions at random: multiple-
choice, open-ended, and coding questions. In total,
we’ve generated 733,419 instruction tuning data
pieces using GPT-3.5-Turbo.

We also incorporated instruction tuning
data from previous AceGPT projects (Huang
et al., 2023b), including Quora-Arabic, Alpaca-
Arabic (Taori et al., 2023), Code-Alpaca-
Arabic (Chaudhary, 2023), Evol-Instruct-
Arabic (Xu et al., 2023), and ShareGPT data.

4.2 Training details

In refining our methodology for the LLaMA2
model’s vocabulary expansion to enhance its han-
dling of Arabic, we not only identified and inte-
grated 12,800 new Arabic subwords using the I-
BPE method but also adjusted the language content
ratio at each of the 16 training stages 3. Each stage
involved training with 30B tokens, totaling 480B
tokens across all stages. Both English and Arabic
data were used at each stage, with the proportion
of these languages determined using a cosine an-
nealing schedule. To ensure robust inference capa-
bilities, we included code and mathematical data,
maintaining a consistent 5% at every stage, see de-
tails in Appendix D. Following the expansion of
the vocabulary through the aforementioned stages,
to further enhance the model’s performance, we
continued training on an additional 20B data based
on the expanded vocabulary.

In this paper, we continue pre-training on
LLaMA2 models, which have 7 billion (7B) and
13 billion (13B) parameters, using a computational
framework composed of 2,368 GPUs. We employ a
model parallelism of 2 and a pipeline parallelism of
4. Optimization was carried out using the AdamW
optimizer, with a context length of 4,096 tokens
for each model. At the start of every training stage,
we reintroduced a cosine learning rate scheduler
with an initial rate of 1e-5 and decreased to 2e-6,
ensuring a gradual adaptation through a 15% warm-
up period at the beginning of each stage. Gradient
accumulation was set at 8, achieving a total batch
size of 4,736 and enabling the processing of ap-
proximately 0.019 billion tokens per batch.

5 Experiments

5.1 Experimental settings

Benchmarking Datasets As shown in Table 1,
we employ four popular benchmarks aimed at as-
sessing world knowledge: (1) MMLU (Measur-
ing Massive Multitask Language Understanding)
- This dataset is designed to measure the knowl-
edge acquired during pretraining. For this bench-
mark, we employ both the original English ver-
sion from (Hendrycks et al., 2021b) and the Arabic

3In principle, a stageless solution could be employed, al-
lowing the addition of one token after another without the need
to define the boundaries between stages. However, for the sake
of simplifying the implementation, particularly in terms of
data preparation, we have opted for a staged approach where
we make the number of stages N = 16.



Aspect Benchmark Language
(+ translation) Size Evaluation Types Metrics

Knowledge Ability

RACE (Lai et al., 2017) EN 4.9K Multiple-choice Questions Accuracy
MMLU (Hendrycks et al., 2021a) EN (+AR) 14K Multiple-choice Questions Accuracy
ArabicMMLU (Koto et al., 2024) AR 14.5K Multiple-choice Questions Accuracy
EXAMS (Hardalov et al., 2020) AR 0.56K Multiple-choice Questions Accuracy

Arabic Cultural
and Value Alignment

ACVA-all (Huang et al., 2023b) AR 9K Yes/No binary Questions F1-score
ACVA-clean AR 2.48K Yes/No binary Questions F1-score

Commonsense
Reasoning

BoolQ (Clark et al., 2019) EN (+AR) 3.27K Yes/No binary Questions Accuracy
ARC-Challenge (Clark et al., 2018) (+AR) 1.17K Multiple-choice Questions Accuracy

Table 1: Overview of Evaluation benchmarks

version proposed by (Huang et al., 2023b), ensur-
ing comprehensive coverage. (2) RACE (Read-
ing Comprehension from Examinations) - A large-
scale reading comprehension dataset designed to
evaluate the educational knowledge of the models.
(3) EXAMS (Multi-subject High School Examina-
tions Dataset for Cross-lingual and Multilingual
Question Answering) - Different from the previous
benchmarks, EXAMS provides a diverse range of
subjects for evaluation. (4) ArabicMMLU - Simi-
lar to the global MMLU, this dataset is specifically
tailored for original Arabic LLMs, encompassing
various countries and subjects. Additionally, evalu-
ating Arabic cultural and value alignment is crucial.
To assess this, we utilize ACVA-all and ACVA-
clean for localization testing. To comprehensively
evaluate model performance on inference and rea-
soning ability, we translate two commonsense rea-
soning benchmarks of varying difficulty: BoolQ
and ARC-Challenge (ARC-C).

To ensure a fair comparison of candidate
models, we adhere to the settings established
for each benchmark separately. Furthermore,
for translated benchmarks, we utilize the gen-
eration approach evaluation method as outlined
in (Huang et al., 2023b). Specifically, we employed
GPT-3.5-Turbo-1106 to translate datasets
from English to Arabic for benchmarks that were
not originally in Arabic.

Baselines To compare LLMs trained or avail-
able in Arabic, we have selected several prominent
Arabic LLMs or multilingual LLMs as baselines
for comparison: (1) AceGPT-[7B,13B] (Huang
et al., 2023b): This set includes fully fine-tuned
generative text models based on LLaMA2, specif-
ically customized for the Arabic language do-
main. (2) Mistral-7B-Instruct-v0.2 (Jiang et al.,
2023): The fine-tuned model achieves a balance
between performance and efficiency. (3) Jais-

[13B,30B] (Sengupta et al., 2023): A pre-trained
bilingual large language model designed for both
Arabic and English. (4) Bloom-[7B]: A multi-
lingual language model extensively trained on di-
verse textual data, allowing it to produce fluent text
in 46 languages and 13 programming languages.
(5) LLaMA2-[7B,13B]: A popular and competitive
baseline model in the general domain. (6) OpenAI
GPT: This includes GPT4 and ChatGPT, closed-
source LLMs also strong at multilingual tasks.

5.2 Evaluation Results

Evaluation on Base Models In our study, the
performance of base models was assessed on two
Arabic-specific MMLU datasets: Arabic MMLU
translate (Huang et al., 2023b) and ArabicMMLU
(Koto et al., 2024). The left side of Table 2 de-
tails the models’ accuracies on the Arabic MMLU
translate dataset within a few-shot setting. It is ev-
ident from the data that the AraLLaMA-7B-base
and AraLLaMA-13B-base models exhibit superior
accuracy rates compared to models of similar scale.
Notably, the AraLLaMA-13B-base model outper-
forms the Jais-30B model, which has a significantly
larger parameter count.

Additionally, the right side of Table 2 presents
the accuracy results of models in a zero-shot learn-
ing scenario. Here again, the AraLLaMA models
stand out for their exceptional performance, even
when compared to models with similar parame-
ter sizes. In particular, the AraLLaMA-13B-base
model demonstrates a marked advantage over the
Jais-30B-base model, notwithstanding the latter’s
larger size in terms of parameters.

These findings affirm the effectiveness of the Ar-
aLLaMA models, developed through an annealing
algorithm to expand the vocabulary, highlighting
our methodology as a productive strategy for en-
hancing large models’ adaptability to less prevalent
languages. This contribution significantly advances



the field of language model adaptation, offering a
novel avenue for enriching language technology’s
inclusivity and depth.

Evaluation on Chat Models Table 3 presents
the comprehensive evaluation results across vari-
ous benchmarks for the candidate models, span-
ning from Arabic to English. Overall, AraLLaMA
outperforms all baseline models in the Arabic lan-
guage tasks. Particularly noteworthy is its profi-
ciency in knowledge-related evaluations such as
Arabic-translated MMLU and EXAMS, surpass-
ing other models by at least 1.3%. This high-
lights the model’s expertise in addressing Arabic
knowledge-related questions. Additionally, AraL-
LaMA demonstrates strong performance in tasks
related to Arabic culture and value alignment. In
terms of commonsense reasoning, AraLLaMA ex-
hibits notable skills in tasks such as the trans-
lated versions of BoolQ and ARC-Challenge, show-
casing its reasoning capabilities in Arabic. Be-
yond Arabic benchmarks, we also investigated the
English proficiency of the models to determine
whether specialization in one language affects per-
formance in the other. The results indicate that
the model maintains its English proficiency and
displays robustness in multilingual assessments. It
is noteworthy that the lower accuracy of the Jais
is attributed to its refusal to answer for unknown
reasons.

In a comprehensive evaluation of the ACVA
dataset aimed at gauging the understanding of Ara-
bic cultural nuances under a zero-shot setting, our
AraLLaMA models showcased unparalleled perfor-
mance. The AraLLaMA-13B-chat, in particular,
stood out with exceptional Average F1 scores of
76.37% and 76.90% in “all set" and "clean Set"
categories, respectively, even outperforming the
renowned ChatGPT 3.5 Turbo in the "All set" cate-
gory. This performance not only highlights the Ar-
aLLaMA models’ superior grasp of Arabic culture
but also establishes them as leading figures among
open-source models in this nuanced domain. Com-
pared to other top-tier open-source contenders, in-
cluding the Jais-30B-chat variants, the AraLLaMA-
13B-chat model’s superior results. The instruction-
following tests can be found in Appendix H.

6 More Analysis

6.1 Ablation Study on Progressive Vocabulary
Expansion

To further demonstrate the effectiveness of pro-
gressive vocabulary expansion in downstream task
adaptation, we conduct continuous pre-training on
a 1B-parameter TinyLLaMA model (Zhang et al.,
2024), followed by supervised fine-tuning. More
details on the experimental setup can be found in
Appendix I.

A comprehensive analysis is conducted by ap-
plying the same Supervised Fine-Tuning (SFT) pro-
tocol across three pre-training configurations: the
baseline TinyLLaMA model, TinyLLaMA with
Progressive Vocabulary Expansion (PVE), and
TinyLLaMA with Vocabulary Expansion all at once
(VE). The performance of these models is evalu-
ated on the Arabic MMLU (see Table 4) and Arabic
Vicuna-80 (see Table 5) benchmarks. Experiment
results demonstrate that vocabulary expansion sig-
nificantly enhances model performance, with the
PVE approach yielding superior results across var-
ious categories in the Arabic MMLU benchmark,
achieving an average score of 40.7 compared to
38.5 for VE and 36.5 for the baseline model. Simi-
larly, in the Arabic Vicuna-80 comparison, the PVE
method led to the highest accuracy of 29.18%, out-
performing VE (22.61%) and the baseline model
(21.3%). These results underscore the effectiveness
of progressive vocabulary expansion in enhancing
language model performance, particularly in com-
plex language tasks.

6.2 Compression Ratios
An encoding comparison was conducted on a con-
sistent corpus to evaluate the compression effi-
ciency of the vocabularies from LLaMA (AceGPT)
and AraLLaMA, using LLaMA as the bench-
mark. AraLLaMA notably enhanced the baseline
by achieving a token compression ratio of 0.3174,
following the augmentation of its vocabulary with
12,800 Arabic subwords.

6.3 Benchmarking in English dataset
We evaluated the accuracy of both base and chat
models on the English MMLU dataset. As illus-
trated in Table 2 (shown in Appendix F), in the base
model category, AraLLaMA’s accuracy is slightly
lower than that of the original LLaMA model but
notably higher than the AceGPT model, which
is also trained on the LLaMA architecture. This
indicates that expanding Arabic capabilities via
an annealing algorithm does not compromise the
model’s inherent English proficiency. This offers a
viable solution for language transfer in large mod-



Models Arabic-trans MMLU (Huang et al., 2023b) ArabicMMLU (Koto et al., 2024) Total

STEM Human-
ities

Social
Sciences Others Avg. STEM Social

Sciences
Human-

ities
Arabic

Language Other Avg. Avg.

Bloomz-7B-base 33.35 29.29 37.58 34.53 33.69 - - - - - - -
LLaMA2-7B-base 30.30 29.33 27.46 30.78 29.47 33.7 32.8 33.5 28.4 36.7 33.4 31.43
AceGPT-7B-base 29.73 30.95 33.45 34.42 32.14 35.4 35.9 36.2 31.1 41.7 36.3 34.22
AraLLaMA-7B-base 33.03 32.08 35.39 35.59 34.03 36.7 36.5 34.1 30.0 41.2 37.0 35.52
LLaMA2-13B-base 32.94 32.30 33.42 37.27 33.76 32.9 35.0 37.8 35.8 39.3 36.1 34.93
Jais-13B-base 30.51 31.25 33.74 33.43 33.76 30.3 31.4 33.6 28.1 36.3 32.2 32.98
AceGPT-13B-base 36.60 38.74 43.76 42.72 40.45 42.7 45.5 48.3 42.4 50.7 46.1 43.28
AraLLaMA-13B-base 36.13 40.07 45.43 42.17 40.95 42.4 45.7 48.4 46.3 52.5 47.6 44.28
Jais-30B-v1-base 32.67 30.67 42.13 39.60 36.27 39.5 45.6 50.5 34.6 49.1 44.8 40.54
ChatGPT 3.5 Turbo 43.38 44.12 55.57 53.21 49.07 53.8 57.0 57.5 57.6 63.8 57.7 53.39

Table 2: Evaluation of base models. We adopt a few-shot setting on Arabic-translated MMLU (Huang et al., 2023b)
and a zero-shot setting with option logit probability in ArabicMMLU (Koto et al., 2024). Numbers with the best
performance are in bold in 7B and 13B groups.

Models Arabic English Total
MMLU
(trans)

MMLU
(Koto et al., 2024)

EXAMS ACVA
clean

ACVA
all

BoolQ
(trans)

ARC-C
(trans) Avg. BoolQ RACE Avg. Avg.

LLaMA2-7B-chat 13.78 33.40 13.05 20.99 21.80 34.92 23.72 21.09 71.31 50.49 60.90 31.49
Phoenix-7b 29.72 44.74 31.93 43.80 41.86 66.70 33.53 41.75 62.23 60.97 61.60 46.16
AceGPT-7B-chat 30.69 36.31 33.73 53.87 53.07 60.70 38.05 43.77 54.74 53.97 54.36 46.12
Mistral-7B-Instruct-v0.2 27.93 41.44 21.56 64.56 63.47 60.18 35.67 44.97 84.53 73.17 78.85 52.50
AraLLaMA-7B-chat 45.77 56.62 43.69 69.46 70.86 72.45 60.49 59.90 75.78 72.13 73.96 63.02
Jais-13B-chat 19.52 54.83 19.71 66.75 61.41 41.25 11.95 39.34 28.13 20.08 24.10 35.96
LLaMA2-13B-chat 8.92 36.12 16.11 35.12 35.71 54.13 27.47 30.51 62.87 48.28 55.58 36.08
AceGPT-13B-chat 35.59 52.61 38.72 70.82 70.21 66.85 44.20 54.14 60.55 45.22 52.88 53.86
AraLLaMA-13B-chat 47.33 61.70 48.37 76.90 76.37 69.33 63.99 63.42 83.67 80.82 82.24 67.61
Jais-30B-chat-v1 38.12 59.33 40.45 74.46 72.41 73.76 50.94 58.49 65.05 75.26 70.16 61.09
Jais-30B-chat-v3 35.68 62.36 32.24 73.63 73.66 76.30 51.02 57.84 79.54 85.23 82.43 63.29
ChatGPT 3.5 Turbo 46.07 57.72 45.63 74.45 76.88 76.12 60.24 62.44 85.32 84.65 84.99 67.45

Table 3: Chat Models Evaluation in zero-shot setting. Numbers with best performance are in bold in 7B and 13B
groups.

els. After undergoing SFT, AraLLaMA achieves
the highest accuracy among models of similar size
and surpasses the Jais-30B model, which has a
greater number of parameters.

7 Conclusion

Adapting large-scale models to less commonly spo-
ken languages is fraught with challenges, notably
the hurdles of knowledge transfer and the preva-
lence of OOV terms. We developed a novel an-
nealing training algorithm to address these issues
specifically for Arabic. This strategy methodically
expands the vocabulary and employs a phased train-
ing process, leading to the development of the Ar-
aLLaMA 7B and 13B models. Subsequent eval-
uations of both the base and chat configurations
across diverse datasets have unequivocally estab-
lished AraLLaMA’s superior accuracy compared
to peers within the same parameter range. Remark-
ably, the AraLLaMA also exhibits robust perfor-
mance advantages over models with significantly
more parameters. The proven efficacy of our al-
gorithm is supported by robust empirical evidence.

Moving forward, we aim to further democratize ac-
cess to advanced model technology by making our
models, along with their code and datasets, openly
available, thus making a meaningful contribution
to the progress of the field.

Limitation

This paper exhibits several limitations. Due to con-
straints in resources and budget, the models has
not undergone evaluation by native Arabic speak-
ers, which could affect its practicality and adoption.
Consequently, its use is currently confined to aca-
demic research rather than online deployment. Ad-
ditionally, the writing of this paper was supported
by AI tools for grammar correction and refinement.



Model STEM Social
Sciences Humanities Arabic

Language Other Avg.

TinyLLaMA chat 35.1 36.9 38.5 28.6 39.8 36.5
TinyLLaMA (VE) chat 35.3 39.7 40.1 33.8 41.6 38.5
TinyLLaMA (PVE) chat 36.3 40.7 44.2 33.5 45.7 40.7

Table 4: Performance comparison on ArabicMMLU (Koto et al., 2024) across different domains.

Model Accuracy (%)

TinyLLaMA chat 21.30 (baseline)
TinyLLaMA (VE) chat 22.61 (+1.31)
TinyLLaMA (PVE) chat 29.18 (+7.88)

Table 5: Performance Comparison on Arabic Vicuna-80
Benchmark
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A Related Work

Our work primarily focuses on two key areas: low-
resource language models and vocabulary expan-
sion.

Low-resource language models Recent efforts
have centered on developing open-source LLMs
as alternatives to proprietary models like GPT-3.5
Turbo and GPT-4 (Taori et al., 2023; Chiang et al.,
2023; Conover et al., 2023; Chen et al., 2023; Sen-
gupta et al., 2023). These initiatives have expanded
beyond English, addressing languages with fewer
available resources and creating models specifically
tailored to diverse linguistic landscapes (Chen et al.,
2023; Üstün et al., 2024). SeaLLMs (Nguyen et al.,
2023) are adapted from English-centric models
by extending vocabulary and fine-tuning to better
capture regional language complexities. Jais (Sen-
gupta et al., 2023) introduces a model trained from
scratch based on GPT architecture, while AceGPT
Huang et al., 2023a offers a model designed to
adapt to local Arabic culture, specifically tailored
to regional nuances. This trend highlights the grow-
ing need for multilingual LLMs that perform well
in low-resource environments while maintaining
competitive performance against more established
models.

Vocabulary expansion Vocabulary expansion
for large language models (LLMs) has become a
crucial area of research, particularly for improv-
ing performance in low-resource languages. Tra-
ditional methods like Byte Pair Encoding (BPE),
while effective at handling out-of-vocabulary
(OOV) words, are suboptimal for pretraining larger
models, as discussed by Tay et al. (Bostrom and
Durrett, 2020), who propose alternative tokeniza-
tion methods to better capture linguistic nuances.
Pham et al. (Xu et al., 2020) advance this by intro-
ducing optimal transport-based vocabulary learn-
ing, which optimizes the distribution of subword
units, enhancing translation tasks, particularly in
multilingual and low-resource settings.

Kudo et al. (Kudo, 2018) propose subword reg-
ularization and offer another avenue for improve-
ment by allowing models to learn from multiple
subword segmentation rather than a fixed one, in-
creasing robustness and flexibility. In contexts with
limited data, Liu et al. (Salesky et al., 2020) have
demonstrated that combining subword-based meth-
ods with additional pretraining steps significantly
improves model performance. These works show

that moving beyond traditional vocabulary methods
allows for more dynamic and context-aware model-
ing, enhancing LLMs’ scalability and adaptability
across diverse linguistic landscapes.

B CEFR Language Proficiency Levels

Table 6 illustrates the vocabulary size that learners
are expected to acquire at various stages of second
language acquisition. The vocabulary size is grad-
ually expanding when humans acquire a second
language, as one cannot achieve proficiency in all
second-language words at once, as it takes time to
digest these words.

C Arabic data distribution

Table 7 show the Arabic dataset primarily draws
from several key sources, with the largest contri-
bution coming from the Common Crawl (filtered)
dataset, which accounts for 55.5% of the total data.
Other significant sources include WebText, which
contributes 26.7%, and Books+Newspapers, pro-
viding 8.9% with 2.5 billion tokens. Additionally,
Wikipedia is divided into two parts, contributing
3.76% and 5.14%. These diverse sources collec-
tively form the foundation for training the Arabic
language model.

D Data mixture

Table 8 shows the data distribution across the pre-
training stages is carefully adjusted, with the pro-
portions of Arabic and English data determined
using a cosine annealing schedule. Initially, the
Arabic data constitutes 30% of the total, while
English data makes up 65% and math & coding
data consistently accounts for 5%. As the training
progresses and new subwords are added, the pro-
portion of Arabic data increases steadily, reaching
90% by the final stage. Concurrently, the English
data proportion decreases to 5%, while the math &
coding data remains constant at 5% throughout all
stages. This dynamic adjustment ensures that the
model effectively balances the learning of Arabic
and English content, with a strong emphasis on
Arabic in the later stages.

E Comparison of compression ratio and
OOV changes at different stages
between exponential and uniform
expansion

Table 9 illustrates the trends in compression ra-
tio and OOV (Out-Of-Vocabulary) ratio as vocab-



CEFR Level Description Learning Hours Vocabulary Size

Basic User
A1 Beginner Level 110-130 2000 words
A2 Elementary Level 150-180 3000 words

Independent User
B1 Intermediate Level 200-230 5000 words
B2 Upper Intermediate Level 200-230 8000 words

Proficient User
C1 Advanced Level 150-200 10000 words
C2 Mastery Level 250-300 30000 words

Table 6: CEFR Language Proficiency Levels.

Dataset # tokens Weight in training mix

Common Crawl (filtered) 101.3 billion 55.5%
WebText 10.62 billion 26.7%
Books+Newspapers 2.5 billion 8.9%
Wikipedia1 0.36 billion 3.76%
Wikipedia2 0.51 billion 5.14%

Table 7: Arabic data distribution and elapsed epochs

ulary size is incrementally expanded using both
Exponential and Uniform methods. In the case of
**Exponential Vocabulary Expansion**, both the
compression ratio and OOV ratio change gradually,
ensuring a more balanced progression as new sub-
words are added. This gradual change is beneficial
for maintaining stability during model training, as
it allows the system to adjust incrementally to the
growing vocabulary.

F Evaluation of models in English
MMLU dataset

In the evaluation of English MMLU performance,
AraLLaMA models, both 7B and 13B, consis-
tently outperform their counterparts across most
categories in both few-shot and zero-shot settings
(shown in Table 2). Particularly, AraLLaMA-13B
achieves the highest average score of 62.89 in zero-
shot tasks, demonstrating its superior capability in
generalization and task adaptability.

G ALAN examples

We provide concrete examples of ALAN below.
Note that we translate examples into English us-
ing GPT-3.5-Turbo. In practice, our data is in
Arabic.

G.1 Topics

A set of 30 topics, randomly chosen, is listed be-
low:

"Arabic Language and Literature" "Mathematics"

"Islamic Studies" "Middle Eastern History and

Politics" "Computer science" "Economics" "Healthcare

industry" "Social work" "Business" "Geography"

"Mining" "Chemical Engineering" "Languages and

Literature" "Materials Science and Engineering"

"Transport industry" "Chemistry" "Food industry"

"Systems science" "Astronomy" "Cultural industry"

"Energy industry" "Radiology" "Pediatrics"

"Dentistry" "Civil Engineering" "Aerospace industry"

"Public administration" "Infectious disease" "Public

policy" "Environmental studies and forestry"

G.2 Subjects

A set of 30 subjects, randomly chosen, is listed
below:

"Hypersonic and High-Speed Flows" "Mental

Health Nursing" "Mechanical Systems and Energy

Efficiency" "Obstetrics and Gynecological Nursing"

"Immunology" "Interdisciplinary Geriatric Care"

"Signal Processing" "Geography research methods

and techniques" "Public Administration and

Management" "An introduction to space exploration"

"Environmental and Safety Management" "Social and

Ethical Aspects of Agriculture" "Folk and Cultural

Dance" "Power System Protection and Control"

"Collage and Mixed Media" "Advanced Game Theory"

"Pediatric Critical Care" "Transport Modeling

and Forecasting" "Foundations of Mathematics"

"Carbon Capture, Storage, and Utilization" "Customer

Service and Relationship Management" "Introduction



Stage New subwords added Arabic data English data math & coding data

1 0 30.00% 65.00% 5.00%
2 1 30.33% 64.47% 5.00%
3 2 31.31% 63.69% 5.00%
4 4 32.94% 62.06% 5.00%
5 8 35.19% 59.81% 5.00%
6 16 38.04% 56.96% 5.00%
7 32 41.46% 53.54% 5.00%
8 64 45.41% 49.59% 5.00%
9 128 49.85% 45.15% 5.00%

10 256 54.73% 40.27% 5.00%
11 512 60.00% 35.00% 5.00%
12 1024 65.60% 29.40% 5.00%
13 2048 71.46% 23.54% 5.00%
14 4196 77.53% 17.47% 5.00%
15 8192 83.73% 11.27% 5.00%
16 12800 90.00% 5.00% 5.00%

Table 8: Detailed distribution of Arabic, English and math & coding data across each pre-training stage.

Add Subword Size Compress Ratio (Exponential) OOV Ratio (Exponential) Add Subword Size Compress Ratio (Uniform) OOV Ratio (Uniform)

0 0.90 0.000 0 0.90 0.000
1 0.88 0.017 853 0.45 0.669
2 0.87 0.018 1736 0.40 0.116
4 0.85 0.022 2559 0.37 0.068
8 0.82 0.038 3412 0.35 0.049

16 0.77 0.061 4265 0.34 0.039
32 0.72 0.076 5118 0.33 0.031
64 0.65 0.094 5971 0.32 0.026
128 0.60 0.093 6824 0.31 0.021
256 0.54 0.105 7677 0.31 0.019
512 0.48 0.116 8530 0.30 0.017
1024 0.43 0.110 9383 0.30 0.015
2048 0.39 0.118 10236 0.30 0.013
4096 0.34 0.120 11089 0.29 0.012
8192 0.31 0.116 11942 0.29 0.011

12800 0.28 0.070 12800 0.28 0.010

Table 9: Comparison of Exponential and Uniform Vocabulary Expansion Methods

to Probability" "Virtual Reality and Augmented

Reality" "Reservoir Management and Enhanced Oil

Recovery" "Safety and Standards in Industrial

Robotics" "Social Work with LGBTQ+ populations"

"Nutritional Science" "Advanced Gynaecology Courses"

"Bioinformatics and Computational Chemistry"

"Reusable Launch Vehicle Technology"

G.3 A syllabus with specific knowledge points

We provide an example syllabus with specific
knowledge points as below.

Subject title: Hypersonic and High-Speed Flows

Lecture title: Introduction to Hypersonic Flows

Knowledge points:

- Definition of hypersonic flows

- Mach number

- Key characteristics of hypersonic flows

Lecture title: Fundamentals of Shock Waves

Knowledge points:

- Definition of shock waves

- Formation of shock waves

- Types of shock waves

Lecture title: High-Temperature Gas Dynamics

Knowledge points:

- Definition of high-temperature gas dynamics

- Behavior of high-temperature gases

- Effects of high-temperature gases on materials

Lecture title: Principles of Rarefied Gas Dynamics

Knowledge points:

- Definition of rarefied gas dynamics

- The continuum hypothesis

- Governing equations

Lecture title: High-Speed Flow Over Bodies

Knowledge points:

- High-speed flow characteristics

- Impact on the body

- Aerodynamic heating

Lecture title: Hypersonic Vehicle Configurations

Knowledge points:

- Types of hypersonic vehicles

- Vehicle configurations

- Advantages and limitations of each configuration



Lecture title: Aerothermodynamics of Hypersonic

Flows

Knowledge points:

- Definition of aerothermodynamics

- Aerothermodynamics in hypersonic flows

- Heat transfer in hypersonic flows

Lecture title: Hypersonic Flow Control

Knowledge points:

- Importance of flow control

- Methods of hypersonic flow control

- Challenges in hypersonic flow control

Lecture title: Hypersonic Propulsion Systems

Knowledge points:

- Types of hypersonic propulsion systems

- Working principles

- Advantages and disadvantages

Lecture title: Future Trends in Hypersonic and

High-Speed Flows

Knowledge points:

- Current research in the field

- Potential future trends

- Challenges and opportunities

G.4 Synthetic QA data
We provide a synthetic QA example using knowl-
edge points generated by GPT-3.5-Turbo.

Subject title:

Computer Vision for Industrial Robotics

Lecture title:

Stereo Vision and 3D Reconstruction

Knowledge points:

- Principles of stereo vision

- Stereo camera calibration

- Depth estimation and 3D reconstruction

- Point cloud processing

Synthetic question:

In stereo vision, the process of determining the

depth of objects in a scene is known as:

A. Image rectification

B. Disparity mapping

C. Camera calibration

D. Point cloud processing

Synthetic solution to the question:

B

Explanation:

The correct answer is B. Disparity mapping. In

stereo vision, the depth of objects in a scene is

determined by calculating the disparity between

corresponding points in the left and right images.

Disparity mapping involves finding the pixel-level

differences between the two images to estimate the

depth information.

H Instruction-following test

We evaluated the models’ instruction-following
capabilities using the Arabic versions of Vicuna-
80 (Chiang et al., 2023), translated by GPT-4 and
refined by native speakers. Following the method-
ology in (Chiang et al., 2023), GPT-4 was used
as the evaluator, assigning scores to each model’s
performance compared to GPT-3.5 Turbo, with a
temperature setting of 0.2. For each question, GPT-
4 independently scored the responses from both
the evaluated model and GPT-3.5 Turbo. The aver-
age performance ratio of the evaluated model was
calculated by dividing its overall score by that of
GPT-3.5 Turbo. Results in Table 11 indicate that
AraLLaMA models outperform their counterparts
in Arabic Vicuna-80. Notably, AraLLaMA-7B ex-
ceeds Jais-13B by approximately 17%, despite hav-
ing a smaller model size.

Model Ratio of GPT-3.5

Jais-13B 75.40%
Llama-7B 78.99%
AraLLaMA-7B 92.71%

Table 11: Performance ratio of GPT-3.5 Turbo in Arabic
Vicuna-80.

I Details of Ablation Study

Figure 3: Loss curve of TinyLLaMa with sliding win-
dow average



I.1 Experiment Settings:
We undertook continuous pre-training on a 1B-
parameter TinyLLaMA model (Zhang et al., 2024),
which is derived from the LLaMA architecture and
was initially trained on an English corpus compris-
ing 3 trillion tokens. The pre-training regimen was
segmented into five distinct stages, during which
0, 16, 64, 256, and 1024 Arabic subwords were
progressively added to the vocabulary. Each stage
allocated a different volume of data, totaling 80
billion tokens, with the proportion of Arabic to En-
glish data gradually shifting from 0:10 to 9:1. In a
parallel experiment, we introduced 1024 subwords
to the vocabulary in a single step, maintaining the
same total token count and data distribution as in
the phased approach. Both experiments adhered
to an identical learning rate strategy, reinstating a
cosine learning rate scheduler at the onset of each
stage, starting with an initial rate of 1e-5 and taper-
ing to 2e-6, with the initial 5 billion tokens of each
stage designated for warm-up. Utilizing 192 GPUs,
the experiments were conducted with a batch size
of 3072.

I.2 Progressive Vocabulary Expansion
Pre-training

The results shown in Figure 3 demonstrate that
the strategy of progressively expanding the vocabu-
lary, which applies a sliding window average tech-
nique, yields a reduced final loss. Furthermore, as
evidenced in Table 12, within the ArabicMMLU
dataset, the approach of incrementally introduc-
ing new vocabulary items consistently outperforms
the method of a one-time vocabulary expansion.
This pattern underscores the effectiveness of grad-
ual vocabulary enhancement in optimizing model
performance.



Model STEM
Social

Sciences
Humanities

Arabic
Language

Other Avg

Expand vocab at once 28.6 26.7 28.1 24.4 30.1 27.0
Gradually expand vocab (ours) 29.8 27.1 27.2 24.6 31.4 27.3

Table 12: Zero-shot evaluation for TinyLLaMA in ArabicMMLU (Koto et al., 2024) with option logit probabiltiy
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