jeiku commited on
Commit
8fe87d8
1 Parent(s): e0d2adc

Upload 10 files

Browse files
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 128000,
9
+ "eos_token_id": 128019,
10
+ "head_dim": 128,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 3072,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 9216,
15
+ "max_position_embeddings": 131072,
16
+ "mlp_bias": false,
17
+ "model_type": "llama",
18
+ "num_attention_heads": 32,
19
+ "num_hidden_layers": 32,
20
+ "num_key_value_heads": 8,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": {
24
+ "factor": 8.0,
25
+ "high_freq_factor": 4.0,
26
+ "low_freq_factor": 1.0,
27
+ "original_max_position_embeddings": 8192,
28
+ "rope_type": "llama3"
29
+ },
30
+ "rope_theta": 500000.0,
31
+ "tie_word_embeddings": false,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.45.0.dev0",
34
+ "use_cache": false,
35
+ "vocab_size": 128256
36
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "do_sample": true,
5
+ "eos_token_id": 128001,
6
+ "transformers_version": "4.45.0.dev0"
7
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac9a6b1f450378986fa5f621c8b10fa9ff22d314d900fae0cb8adb4513035ed8
3
+ size 4978354640
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58e6a8cf421e7d01f765082f596a460d06f59ce13b76c7957cd2dad3e5a6dbbb
3
+ size 4047172128
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 9025492992
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "model.norm.weight": "model-00002-of-00002.safetensors"
297
+ }
298
+ }
modeling_llama.py ADDED
@@ -0,0 +1,1620 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ import math
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+
29
+ from ...activations import ACT2FN
30
+ from ...cache_utils import Cache, DynamicCache, StaticCache
31
+ from ...modeling_attn_mask_utils import AttentionMaskConverter
32
+ from ...modeling_flash_attention_utils import _flash_attention_forward
33
+ from ...modeling_outputs import (
34
+ BaseModelOutputWithPast,
35
+ CausalLMOutputWithPast,
36
+ QuestionAnsweringModelOutput,
37
+ SequenceClassifierOutputWithPast,
38
+ TokenClassifierOutput,
39
+ )
40
+ from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS
41
+ from ...modeling_utils import PreTrainedModel
42
+ from ...pytorch_utils import ALL_LAYERNORM_LAYERS
43
+ from ...utils import (
44
+ add_start_docstrings,
45
+ add_start_docstrings_to_model_forward,
46
+ is_flash_attn_greater_or_equal_2_10,
47
+ is_torchdynamo_compiling,
48
+ logging,
49
+ replace_return_docstrings,
50
+ )
51
+ from .configuration_llama import LlamaConfig
52
+
53
+
54
+ logger = logging.get_logger(__name__)
55
+
56
+ _CONFIG_FOR_DOC = "LlamaConfig"
57
+
58
+
59
+ def _prepare_4d_causal_attention_mask_with_cache_position(
60
+ attention_mask: torch.Tensor,
61
+ sequence_length: int,
62
+ target_length: int,
63
+ dtype: torch.dtype,
64
+ device: torch.device,
65
+ min_dtype: float,
66
+ cache_position: torch.Tensor,
67
+ batch_size: int,
68
+ ):
69
+ """
70
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
71
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
72
+
73
+ Args:
74
+ attention_mask (`torch.Tensor`):
75
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
76
+ sequence_length (`int`):
77
+ The sequence length being processed.
78
+ target_length (`int`):
79
+ The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
80
+ dtype (`torch.dtype`):
81
+ The dtype to use for the 4D attention mask.
82
+ device (`torch.device`):
83
+ The device to plcae the 4D attention mask on.
84
+ min_dtype (`float`):
85
+ The minimum value representable with the dtype `dtype`.
86
+ cache_position (`torch.Tensor`):
87
+ Indices depicting the position of the input sequence tokens in the sequence.
88
+ batch_size (`torch.Tensor`):
89
+ Batch size.
90
+ """
91
+ if attention_mask is not None and attention_mask.dim() == 4:
92
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
93
+ causal_mask = attention_mask
94
+ else:
95
+ causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
96
+ if sequence_length != 1:
97
+ causal_mask = torch.triu(causal_mask, diagonal=1)
98
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
99
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
100
+ if attention_mask is not None:
101
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
102
+ mask_length = attention_mask.shape[-1]
103
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
104
+ padding_mask = padding_mask == 0
105
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
106
+ padding_mask, min_dtype
107
+ )
108
+
109
+ return causal_mask
110
+
111
+
112
+ class LlamaRMSNorm(nn.Module):
113
+ def __init__(self, hidden_size, eps=1e-6):
114
+ """
115
+ LlamaRMSNorm is equivalent to T5LayerNorm
116
+ """
117
+ super().__init__()
118
+ self.weight = nn.Parameter(torch.ones(hidden_size))
119
+ self.variance_epsilon = eps
120
+
121
+ def forward(self, hidden_states):
122
+ input_dtype = hidden_states.dtype
123
+ hidden_states = hidden_states.to(torch.float32)
124
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
125
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
126
+ return self.weight * hidden_states.to(input_dtype)
127
+
128
+ def extra_repr(self):
129
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
130
+
131
+
132
+ ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
133
+
134
+
135
+ class LlamaRotaryEmbedding(nn.Module):
136
+ def __init__(
137
+ self,
138
+ dim=None,
139
+ max_position_embeddings=2048,
140
+ base=10000,
141
+ device=None,
142
+ scaling_factor=1.0,
143
+ rope_type="default",
144
+ config: Optional[LlamaConfig] = None,
145
+ ):
146
+ super().__init__()
147
+ # TODO (joao): remove the `if` below, only used for BC
148
+ self.rope_kwargs = {}
149
+ if config is None:
150
+ logger.warning_once(
151
+ "`LlamaRotaryEmbedding` can now be fully parameterized by passing the model config through the "
152
+ "`config` argument. All other arguments will be removed in v4.45"
153
+ )
154
+ self.rope_kwargs = {
155
+ "rope_type": rope_type,
156
+ "factor": scaling_factor,
157
+ "dim": dim,
158
+ "base": base,
159
+ "max_position_embeddings": max_position_embeddings,
160
+ }
161
+ self.rope_type = rope_type
162
+ self.max_seq_len_cached = max_position_embeddings
163
+ self.original_max_seq_len = max_position_embeddings
164
+ else:
165
+ # BC: "rope_type" was originally "type"
166
+ if config.rope_scaling is not None:
167
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
168
+ else:
169
+ self.rope_type = "default"
170
+ self.max_seq_len_cached = config.max_position_embeddings
171
+ self.original_max_seq_len = config.max_position_embeddings
172
+
173
+ self.config = config
174
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
175
+
176
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
177
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
178
+ self.original_inv_freq = self.inv_freq
179
+
180
+ def _dynamic_frequency_update(self, position_ids, device):
181
+ """
182
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
183
+ 1 - growing beyond the cached sequence length (allow scaling)
184
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
185
+ """
186
+ seq_len = torch.max(position_ids) + 1
187
+ if seq_len > self.max_seq_len_cached: # growth
188
+ inv_freq, self.attention_scaling = self.rope_init_fn(
189
+ self.config, device, seq_len=seq_len, **self.rope_kwargs
190
+ )
191
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
192
+ self.max_seq_len_cached = seq_len
193
+
194
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
195
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
196
+ self.max_seq_len_cached = self.original_max_seq_len
197
+
198
+ @torch.no_grad()
199
+ def forward(self, x, position_ids):
200
+ if "dynamic" in self.rope_type:
201
+ self._dynamic_frequency_update(position_ids, device=x.device)
202
+
203
+ # Core RoPE block
204
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
205
+ position_ids_expanded = position_ids[:, None, :].float()
206
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
207
+ device_type = x.device.type
208
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
209
+ with torch.autocast(device_type=device_type, enabled=False):
210
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
211
+ emb = torch.cat((freqs, freqs), dim=-1)
212
+ cos = emb.cos()
213
+ sin = emb.sin()
214
+
215
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
216
+ cos = cos * self.attention_scaling
217
+ sin = sin * self.attention_scaling
218
+
219
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
220
+
221
+
222
+ class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
223
+ """LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
224
+
225
+ def __init__(self, *args, **kwargs):
226
+ logger.warning_once(
227
+ "`LlamaLinearScalingRotaryEmbedding` is deprecated an will be removed in v4.45. Please use "
228
+ "`LlamaRotaryEmbedding`, which now also does linear scaling (simply pass the model config to __init__)."
229
+ )
230
+ kwargs["rope_type"] = "linear"
231
+ super().__init__(*args, **kwargs)
232
+
233
+
234
+ class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
235
+ """LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
236
+
237
+ def __init__(self, *args, **kwargs):
238
+ logger.warning_once(
239
+ "`LlamaDynamicNTKScalingRotaryEmbedding` is deprecated an will be removed in v4.45. Please use "
240
+ "`LlamaRotaryEmbedding`, which now also does dynamic ntk scaling (simply pass the model config to "
241
+ "__init__)."
242
+ )
243
+ kwargs["rope_type"] = "dynamic"
244
+ super().__init__(*args, **kwargs)
245
+
246
+
247
+ def rotate_half(x):
248
+ """Rotates half the hidden dims of the input."""
249
+ x1 = x[..., : x.shape[-1] // 2]
250
+ x2 = x[..., x.shape[-1] // 2 :]
251
+ return torch.cat((-x2, x1), dim=-1)
252
+
253
+
254
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
255
+ """Applies Rotary Position Embedding to the query and key tensors.
256
+
257
+ Args:
258
+ q (`torch.Tensor`): The query tensor.
259
+ k (`torch.Tensor`): The key tensor.
260
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
261
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
262
+ position_ids (`torch.Tensor`, *optional*):
263
+ Deprecated and unused.
264
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
265
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
266
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
267
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
268
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
269
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
270
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
271
+ Returns:
272
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
273
+ """
274
+ cos = cos.unsqueeze(unsqueeze_dim)
275
+ sin = sin.unsqueeze(unsqueeze_dim)
276
+ q_embed = (q * cos) + (rotate_half(q) * sin)
277
+ k_embed = (k * cos) + (rotate_half(k) * sin)
278
+ return q_embed, k_embed
279
+
280
+
281
+ class LlamaMLP(nn.Module):
282
+ def __init__(self, config):
283
+ super().__init__()
284
+ self.config = config
285
+ self.hidden_size = config.hidden_size
286
+ self.intermediate_size = config.intermediate_size
287
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
288
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
289
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
290
+ self.act_fn = ACT2FN[config.hidden_act]
291
+
292
+ def forward(self, x):
293
+ if self.config.pretraining_tp > 1:
294
+ slice = self.intermediate_size // self.config.pretraining_tp
295
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
296
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
297
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
298
+
299
+ gate_proj = torch.cat(
300
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
301
+ )
302
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
303
+
304
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
305
+ down_proj = [
306
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
307
+ ]
308
+ down_proj = sum(down_proj)
309
+ else:
310
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
311
+
312
+ return down_proj
313
+
314
+
315
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
316
+ """
317
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
318
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
319
+ """
320
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
321
+ if n_rep == 1:
322
+ return hidden_states
323
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
324
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
325
+
326
+
327
+ class LlamaAttention(nn.Module):
328
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
329
+
330
+ def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None):
331
+ super().__init__()
332
+ self.config = config
333
+ self.layer_idx = layer_idx
334
+ if layer_idx is None:
335
+ logger.warning_once(
336
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
337
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
338
+ "when creating this class."
339
+ )
340
+
341
+ self.attention_dropout = config.attention_dropout
342
+ self.hidden_size = config.hidden_size
343
+ self.num_heads = config.num_attention_heads
344
+ self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads)
345
+ self.num_key_value_heads = config.num_key_value_heads
346
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
347
+ self.max_position_embeddings = config.max_position_embeddings
348
+ self.rope_theta = config.rope_theta
349
+ self.is_causal = True
350
+
351
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
352
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
353
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
354
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
355
+
356
+ # TODO (joao): remove in v4.45 (RoPE is computed in the model, not in the decoder layers)
357
+ self.rotary_emb = LlamaRotaryEmbedding(config=self.config)
358
+
359
+ def forward(
360
+ self,
361
+ hidden_states: torch.Tensor,
362
+ attention_mask: Optional[torch.Tensor] = None,
363
+ position_ids: Optional[torch.LongTensor] = None,
364
+ past_key_value: Optional[Cache] = None,
365
+ output_attentions: bool = False,
366
+ use_cache: bool = False,
367
+ cache_position: Optional[torch.LongTensor] = None,
368
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
369
+ **kwargs,
370
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
371
+ bsz, q_len, _ = hidden_states.size()
372
+
373
+ if self.config.pretraining_tp > 1:
374
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
375
+ query_slices = self.q_proj.weight.split(
376
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
377
+ )
378
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
379
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
380
+
381
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
382
+ query_states = torch.cat(query_states, dim=-1)
383
+
384
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
385
+ key_states = torch.cat(key_states, dim=-1)
386
+
387
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
388
+ value_states = torch.cat(value_states, dim=-1)
389
+
390
+ else:
391
+ query_states = self.q_proj(hidden_states)
392
+ key_states = self.k_proj(hidden_states)
393
+ value_states = self.v_proj(hidden_states)
394
+
395
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
396
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
397
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
398
+
399
+ if position_embeddings is None:
400
+ logger.warning_once(
401
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
402
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
403
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
404
+ "removed and `position_embeddings` will be mandatory."
405
+ )
406
+ cos, sin = self.rotary_emb(value_states, position_ids)
407
+ else:
408
+ cos, sin = position_embeddings
409
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
410
+
411
+ if past_key_value is not None:
412
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
413
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
414
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
415
+
416
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
417
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
418
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
419
+
420
+ if attention_mask is not None: # no matter the length, we just slice it
421
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
422
+ attn_weights = attn_weights + causal_mask
423
+
424
+ # upcast attention to fp32
425
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
426
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
427
+ attn_output = torch.matmul(attn_weights, value_states)
428
+
429
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
430
+ raise ValueError(
431
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
432
+ f" {attn_output.size()}"
433
+ )
434
+
435
+ attn_output = attn_output.transpose(1, 2).contiguous()
436
+
437
+ attn_output = attn_output.reshape(bsz, q_len, -1)
438
+
439
+ if self.config.pretraining_tp > 1:
440
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
441
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
442
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
443
+ else:
444
+ attn_output = self.o_proj(attn_output)
445
+
446
+ if not output_attentions:
447
+ attn_weights = None
448
+
449
+ return attn_output, attn_weights, past_key_value
450
+
451
+
452
+ class LlamaFlashAttention2(LlamaAttention):
453
+ """
454
+ Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
455
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
456
+ flash attention and deal with padding tokens in case the input contains any of them.
457
+ """
458
+
459
+ def __init__(self, *args, **kwargs):
460
+ super().__init__(*args, **kwargs)
461
+
462
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
463
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
464
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
465
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
466
+
467
+ def forward(
468
+ self,
469
+ hidden_states: torch.Tensor,
470
+ attention_mask: Optional[torch.LongTensor] = None,
471
+ position_ids: Optional[torch.LongTensor] = None,
472
+ past_key_value: Optional[Cache] = None,
473
+ output_attentions: bool = False,
474
+ use_cache: bool = False,
475
+ cache_position: Optional[torch.LongTensor] = None,
476
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
477
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
478
+ if isinstance(past_key_value, StaticCache):
479
+ raise ValueError(
480
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
481
+ "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
482
+ )
483
+
484
+ output_attentions = False
485
+
486
+ bsz, q_len, _ = hidden_states.size()
487
+
488
+ query_states = self.q_proj(hidden_states)
489
+ key_states = self.k_proj(hidden_states)
490
+ value_states = self.v_proj(hidden_states)
491
+
492
+ # Flash attention requires the input to have the shape
493
+ # batch_size x seq_length x head_dim x hidden_dim
494
+ # therefore we just need to keep the original shape
495
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
496
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
497
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
498
+
499
+ if position_embeddings is None:
500
+ logger.warning_once(
501
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
502
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
503
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
504
+ "removed and `position_embeddings` will be mandatory."
505
+ )
506
+ cos, sin = self.rotary_emb(value_states, position_ids)
507
+ else:
508
+ cos, sin = position_embeddings
509
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
510
+
511
+ if past_key_value is not None:
512
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
513
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
514
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
515
+
516
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
517
+ # to be able to avoid many of these transpose/reshape/view.
518
+ query_states = query_states.transpose(1, 2)
519
+ key_states = key_states.transpose(1, 2)
520
+ value_states = value_states.transpose(1, 2)
521
+
522
+ dropout_rate = self.attention_dropout if self.training else 0.0
523
+
524
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
525
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
526
+ # cast them back in the correct dtype just to be sure everything works as expected.
527
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
528
+ # in fp32. (LlamaRMSNorm handles it correctly)
529
+
530
+ input_dtype = query_states.dtype
531
+ if input_dtype == torch.float32:
532
+ if torch.is_autocast_enabled():
533
+ target_dtype = torch.get_autocast_gpu_dtype()
534
+ # Handle the case where the model is quantized
535
+ elif hasattr(self.config, "_pre_quantization_dtype"):
536
+ target_dtype = self.config._pre_quantization_dtype
537
+ else:
538
+ target_dtype = self.q_proj.weight.dtype
539
+
540
+ logger.warning_once(
541
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
542
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
543
+ f" {target_dtype}."
544
+ )
545
+
546
+ query_states = query_states.to(target_dtype)
547
+ key_states = key_states.to(target_dtype)
548
+ value_states = value_states.to(target_dtype)
549
+
550
+ attn_output = _flash_attention_forward(
551
+ query_states,
552
+ key_states,
553
+ value_states,
554
+ attention_mask,
555
+ q_len,
556
+ position_ids=position_ids,
557
+ dropout=dropout_rate,
558
+ sliding_window=getattr(self, "sliding_window", None),
559
+ use_top_left_mask=self._flash_attn_uses_top_left_mask,
560
+ is_causal=self.is_causal,
561
+ )
562
+
563
+ attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
564
+ attn_output = self.o_proj(attn_output)
565
+
566
+ if not output_attentions:
567
+ attn_weights = None
568
+
569
+ return attn_output, attn_weights, past_key_value
570
+
571
+
572
+ class LlamaSdpaAttention(LlamaAttention):
573
+ """
574
+ Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
575
+ `LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
576
+ SDPA API.
577
+ """
578
+
579
+ # Adapted from LlamaAttention.forward
580
+ def forward(
581
+ self,
582
+ hidden_states: torch.Tensor,
583
+ attention_mask: Optional[torch.Tensor] = None,
584
+ position_ids: Optional[torch.LongTensor] = None,
585
+ past_key_value: Optional[Cache] = None,
586
+ output_attentions: bool = False,
587
+ use_cache: bool = False,
588
+ cache_position: Optional[torch.LongTensor] = None,
589
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
590
+ **kwargs,
591
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
592
+ if output_attentions:
593
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
594
+ logger.warning_once(
595
+ "LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
596
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
597
+ )
598
+ return super().forward(
599
+ hidden_states=hidden_states,
600
+ attention_mask=attention_mask,
601
+ position_ids=position_ids,
602
+ past_key_value=past_key_value,
603
+ output_attentions=output_attentions,
604
+ use_cache=use_cache,
605
+ cache_position=cache_position,
606
+ position_embeddings=position_embeddings,
607
+ )
608
+
609
+ bsz, q_len, _ = hidden_states.size()
610
+
611
+ query_states = self.q_proj(hidden_states)
612
+ key_states = self.k_proj(hidden_states)
613
+ value_states = self.v_proj(hidden_states)
614
+
615
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
616
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
617
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
618
+
619
+ if position_embeddings is None:
620
+ logger.warning_once(
621
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
622
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
623
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
624
+ "removed and `position_embeddings` will be mandatory."
625
+ )
626
+ cos, sin = self.rotary_emb(value_states, position_ids)
627
+ else:
628
+ cos, sin = position_embeddings
629
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
630
+
631
+ if past_key_value is not None:
632
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
633
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
634
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
635
+
636
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
637
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
638
+
639
+ causal_mask = attention_mask
640
+ if attention_mask is not None:
641
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
642
+
643
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
644
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
645
+ if query_states.device.type == "cuda" and causal_mask is not None:
646
+ query_states = query_states.contiguous()
647
+ key_states = key_states.contiguous()
648
+ value_states = value_states.contiguous()
649
+
650
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
651
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
652
+ is_causal = True if causal_mask is None and q_len > 1 else False
653
+
654
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
655
+ query_states,
656
+ key_states,
657
+ value_states,
658
+ attn_mask=causal_mask,
659
+ dropout_p=self.attention_dropout if self.training else 0.0,
660
+ is_causal=is_causal,
661
+ )
662
+
663
+ attn_output = attn_output.transpose(1, 2).contiguous()
664
+ attn_output = attn_output.view(bsz, q_len, -1)
665
+
666
+ attn_output = self.o_proj(attn_output)
667
+
668
+ return attn_output, None, past_key_value
669
+
670
+
671
+ LLAMA_ATTENTION_CLASSES = {
672
+ "eager": LlamaAttention,
673
+ "flash_attention_2": LlamaFlashAttention2,
674
+ "sdpa": LlamaSdpaAttention,
675
+ }
676
+
677
+
678
+ class LlamaDecoderLayer(nn.Module):
679
+ def __init__(self, config: LlamaConfig, layer_idx: int):
680
+ super().__init__()
681
+ self.hidden_size = config.hidden_size
682
+
683
+ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
684
+
685
+ self.mlp = LlamaMLP(config)
686
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
687
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
688
+
689
+ def forward(
690
+ self,
691
+ hidden_states: torch.Tensor,
692
+ attention_mask: Optional[torch.Tensor] = None,
693
+ position_ids: Optional[torch.LongTensor] = None,
694
+ past_key_value: Optional[Cache] = None,
695
+ output_attentions: Optional[bool] = False,
696
+ use_cache: Optional[bool] = False,
697
+ cache_position: Optional[torch.LongTensor] = None,
698
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
699
+ **kwargs,
700
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
701
+ """
702
+ Args:
703
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
704
+ attention_mask (`torch.FloatTensor`, *optional*):
705
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
706
+ query_sequence_length, key_sequence_length)` if default attention is used.
707
+ output_attentions (`bool`, *optional*):
708
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
709
+ returned tensors for more detail.
710
+ use_cache (`bool`, *optional*):
711
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
712
+ (see `past_key_values`).
713
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
714
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
715
+ Indices depicting the position of the input sequence tokens in the sequence
716
+ position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
717
+ Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
718
+ with `head_dim` being the embedding dimension of each attention head.
719
+ kwargs (`dict`, *optional*):
720
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
721
+ into the model
722
+ """
723
+ residual = hidden_states
724
+
725
+ hidden_states = self.input_layernorm(hidden_states)
726
+
727
+ # Self Attention
728
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
729
+ hidden_states=hidden_states,
730
+ attention_mask=attention_mask,
731
+ position_ids=position_ids,
732
+ past_key_value=past_key_value,
733
+ output_attentions=output_attentions,
734
+ use_cache=use_cache,
735
+ cache_position=cache_position,
736
+ position_embeddings=position_embeddings,
737
+ **kwargs,
738
+ )
739
+ hidden_states = residual + hidden_states
740
+
741
+ # Add Gaussian noise after self-attention
742
+ hidden_states = hidden_states + torch.randn_like(hidden_states) * 0.0066
743
+
744
+ # Fully Connected
745
+ residual = hidden_states
746
+ hidden_states = self.post_attention_layernorm(hidden_states)
747
+ hidden_states = self.mlp(hidden_states)
748
+ hidden_states = residual + hidden_states
749
+
750
+ # Add Gaussian noise after MLP
751
+ hidden_states = hidden_states + torch.randn_like(hidden_states) * 0.0066
752
+
753
+ outputs = (hidden_states,)
754
+
755
+ if output_attentions:
756
+ outputs += (self_attn_weights,)
757
+
758
+ if use_cache:
759
+ outputs += (present_key_value,)
760
+
761
+ return outputs
762
+
763
+
764
+ LLAMA_START_DOCSTRING = r"""
765
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
766
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
767
+ etc.)
768
+
769
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
770
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
771
+ and behavior.
772
+
773
+ Parameters:
774
+ config ([`LlamaConfig`]):
775
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
776
+ load the weights associated with the model, only the configuration. Check out the
777
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
778
+ """
779
+
780
+
781
+ @add_start_docstrings(
782
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
783
+ LLAMA_START_DOCSTRING,
784
+ )
785
+ class LlamaPreTrainedModel(PreTrainedModel):
786
+ config_class = LlamaConfig
787
+ base_model_prefix = "model"
788
+ supports_gradient_checkpointing = True
789
+ _no_split_modules = ["LlamaDecoderLayer"]
790
+ _skip_keys_device_placement = ["past_key_values"]
791
+ _supports_flash_attn_2 = True
792
+ _supports_sdpa = True
793
+ _supports_cache_class = True
794
+ _supports_quantized_cache = True
795
+ _supports_static_cache = True
796
+
797
+ def _init_weights(self, module):
798
+ std = self.config.initializer_range
799
+ if isinstance(module, nn.Linear):
800
+ module.weight.data.normal_(mean=0.0, std=std)
801
+ if module.bias is not None:
802
+ module.bias.data.zero_()
803
+ elif isinstance(module, nn.Embedding):
804
+ module.weight.data.normal_(mean=0.0, std=std)
805
+ if module.padding_idx is not None:
806
+ module.weight.data[module.padding_idx].zero_()
807
+
808
+
809
+ LLAMA_INPUTS_DOCSTRING = r"""
810
+ Args:
811
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
812
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
813
+ it.
814
+
815
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
816
+ [`PreTrainedTokenizer.__call__`] for details.
817
+
818
+ [What are input IDs?](../glossary#input-ids)
819
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
820
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
821
+
822
+ - 1 for tokens that are **not masked**,
823
+ - 0 for tokens that are **masked**.
824
+
825
+ [What are attention masks?](../glossary#attention-mask)
826
+
827
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
828
+ [`PreTrainedTokenizer.__call__`] for details.
829
+
830
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
831
+ `past_key_values`).
832
+
833
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
834
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
835
+ information on the default strategy.
836
+
837
+ - 1 indicates the head is **not masked**,
838
+ - 0 indicates the head is **masked**.
839
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
840
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
841
+ config.n_positions - 1]`.
842
+
843
+ [What are position IDs?](../glossary#position-ids)
844
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
845
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
846
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
847
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
848
+
849
+ Two formats are allowed:
850
+ - a [`~cache_utils.Cache`] instance;
851
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
852
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
853
+ cache format.
854
+
855
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
856
+ legacy cache format will be returned.
857
+
858
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
859
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
860
+ of shape `(batch_size, sequence_length)`.
861
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
862
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
863
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
864
+ model's internal embedding lookup matrix.
865
+ use_cache (`bool`, *optional*):
866
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
867
+ `past_key_values`).
868
+ output_attentions (`bool`, *optional*):
869
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
870
+ tensors for more detail.
871
+ output_hidden_states (`bool`, *optional*):
872
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
873
+ more detail.
874
+ return_dict (`bool`, *optional*):
875
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
876
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
877
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
878
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
879
+ the complete sequence length.
880
+ """
881
+
882
+
883
+ @add_start_docstrings(
884
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
885
+ LLAMA_START_DOCSTRING,
886
+ )
887
+ class LlamaModel(LlamaPreTrainedModel):
888
+ """
889
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
890
+
891
+ Args:
892
+ config: LlamaConfig
893
+ """
894
+
895
+ def __init__(self, config: LlamaConfig):
896
+ super().__init__(config)
897
+ self.padding_idx = config.pad_token_id
898
+ self.vocab_size = config.vocab_size
899
+
900
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
901
+ self.layers = nn.ModuleList(
902
+ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
903
+ )
904
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
905
+ self.rotary_emb = LlamaRotaryEmbedding(config=config)
906
+ self.gradient_checkpointing = False
907
+
908
+ # Initialize weights and apply final processing
909
+ self.post_init()
910
+
911
+ def get_input_embeddings(self):
912
+ return self.embed_tokens
913
+
914
+ def set_input_embeddings(self, value):
915
+ self.embed_tokens = value
916
+
917
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
918
+ def forward(
919
+ self,
920
+ input_ids: torch.LongTensor = None,
921
+ attention_mask: Optional[torch.Tensor] = None,
922
+ position_ids: Optional[torch.LongTensor] = None,
923
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
924
+ inputs_embeds: Optional[torch.FloatTensor] = None,
925
+ use_cache: Optional[bool] = None,
926
+ output_attentions: Optional[bool] = None,
927
+ output_hidden_states: Optional[bool] = None,
928
+ return_dict: Optional[bool] = None,
929
+ cache_position: Optional[torch.LongTensor] = None,
930
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
931
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
932
+ output_hidden_states = (
933
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
934
+ )
935
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
936
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
937
+
938
+ if (input_ids is None) ^ (inputs_embeds is not None):
939
+ raise ValueError(
940
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
941
+ )
942
+
943
+ if self.gradient_checkpointing and self.training and use_cache:
944
+ logger.warning_once(
945
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
946
+ )
947
+ use_cache = False
948
+
949
+ if inputs_embeds is None:
950
+ inputs_embeds = self.embed_tokens(input_ids)
951
+
952
+ return_legacy_cache = False
953
+ if (
954
+ use_cache and not isinstance(past_key_values, Cache) and not self.training
955
+ ): # kept for BC (non `Cache` `past_key_values` inputs)
956
+ return_legacy_cache = True
957
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
958
+ logger.warning_once(
959
+ "We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
960
+ "Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/internal/generation_utils#transformers.Cache)"
961
+ )
962
+
963
+ if cache_position is None:
964
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
965
+ cache_position = torch.arange(
966
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
967
+ )
968
+ if position_ids is None:
969
+ position_ids = cache_position.unsqueeze(0)
970
+
971
+ causal_mask = self._update_causal_mask(
972
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
973
+ )
974
+ hidden_states = inputs_embeds
975
+
976
+ # create position embeddings to be shared across the decoder layers
977
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
978
+
979
+ # decoder layers
980
+ all_hidden_states = () if output_hidden_states else None
981
+ all_self_attns = () if output_attentions else None
982
+ next_decoder_cache = None
983
+
984
+ for decoder_layer in self.layers:
985
+ if output_hidden_states:
986
+ all_hidden_states += (hidden_states,)
987
+
988
+ if self.gradient_checkpointing and self.training:
989
+ layer_outputs = self._gradient_checkpointing_func(
990
+ decoder_layer.__call__,
991
+ hidden_states,
992
+ causal_mask,
993
+ position_ids,
994
+ past_key_values,
995
+ output_attentions,
996
+ use_cache,
997
+ cache_position,
998
+ position_embeddings,
999
+ )
1000
+ else:
1001
+ layer_outputs = decoder_layer(
1002
+ hidden_states,
1003
+ attention_mask=causal_mask,
1004
+ position_ids=position_ids,
1005
+ past_key_value=past_key_values,
1006
+ output_attentions=output_attentions,
1007
+ use_cache=use_cache,
1008
+ cache_position=cache_position,
1009
+ position_embeddings=position_embeddings,
1010
+ )
1011
+
1012
+ hidden_states = layer_outputs[0]
1013
+
1014
+ if use_cache:
1015
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1016
+
1017
+ if output_attentions:
1018
+ all_self_attns += (layer_outputs[1],)
1019
+
1020
+ hidden_states = self.norm(hidden_states)
1021
+
1022
+ # add hidden states from the last decoder layer
1023
+ if output_hidden_states:
1024
+ all_hidden_states += (hidden_states,)
1025
+
1026
+ next_cache = next_decoder_cache if use_cache else None
1027
+ if return_legacy_cache:
1028
+ next_cache = next_cache.to_legacy_cache()
1029
+
1030
+ if not return_dict:
1031
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1032
+ return BaseModelOutputWithPast(
1033
+ last_hidden_state=hidden_states,
1034
+ past_key_values=next_cache,
1035
+ hidden_states=all_hidden_states,
1036
+ attentions=all_self_attns,
1037
+ )
1038
+
1039
+ def _update_causal_mask(
1040
+ self,
1041
+ attention_mask: torch.Tensor,
1042
+ input_tensor: torch.Tensor,
1043
+ cache_position: torch.Tensor,
1044
+ past_key_values: Cache,
1045
+ output_attentions: bool,
1046
+ ):
1047
+ if self.config._attn_implementation == "flash_attention_2":
1048
+ if attention_mask is not None and 0.0 in attention_mask:
1049
+ return attention_mask
1050
+ return None
1051
+
1052
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
1053
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
1054
+ # to infer the attention mask.
1055
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
1056
+ using_static_cache = isinstance(past_key_values, StaticCache)
1057
+
1058
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
1059
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
1060
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
1061
+ attention_mask,
1062
+ inputs_embeds=input_tensor,
1063
+ past_key_values_length=past_seen_tokens,
1064
+ is_training=self.training,
1065
+ ):
1066
+ return None
1067
+
1068
+ dtype, device = input_tensor.dtype, input_tensor.device
1069
+ min_dtype = torch.finfo(dtype).min
1070
+ sequence_length = input_tensor.shape[1]
1071
+ if using_static_cache:
1072
+ target_length = past_key_values.get_max_length()
1073
+ else:
1074
+ target_length = (
1075
+ attention_mask.shape[-1]
1076
+ if isinstance(attention_mask, torch.Tensor)
1077
+ else past_seen_tokens + sequence_length + 1
1078
+ )
1079
+
1080
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
1081
+ causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
1082
+ attention_mask,
1083
+ sequence_length=sequence_length,
1084
+ target_length=target_length,
1085
+ dtype=dtype,
1086
+ device=device,
1087
+ min_dtype=min_dtype,
1088
+ cache_position=cache_position,
1089
+ batch_size=input_tensor.shape[0],
1090
+ )
1091
+
1092
+ if (
1093
+ self.config._attn_implementation == "sdpa"
1094
+ and attention_mask is not None
1095
+ and attention_mask.device.type == "cuda"
1096
+ and not output_attentions
1097
+ ):
1098
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1099
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1100
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1101
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
1102
+
1103
+ return causal_mask
1104
+
1105
+
1106
+ class LlamaForCausalLM(LlamaPreTrainedModel):
1107
+ _tied_weights_keys = ["lm_head.weight"]
1108
+
1109
+ def __init__(self, config):
1110
+ super().__init__(config)
1111
+ self.model = LlamaModel(config)
1112
+ self.vocab_size = config.vocab_size
1113
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1114
+
1115
+ # Initialize weights and apply final processing
1116
+ self.post_init()
1117
+
1118
+ def get_input_embeddings(self):
1119
+ return self.model.embed_tokens
1120
+
1121
+ def set_input_embeddings(self, value):
1122
+ self.model.embed_tokens = value
1123
+
1124
+ def get_output_embeddings(self):
1125
+ return self.lm_head
1126
+
1127
+ def set_output_embeddings(self, new_embeddings):
1128
+ self.lm_head = new_embeddings
1129
+
1130
+ def set_decoder(self, decoder):
1131
+ self.model = decoder
1132
+
1133
+ def get_decoder(self):
1134
+ return self.model
1135
+
1136
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1137
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1138
+ def forward(
1139
+ self,
1140
+ input_ids: torch.LongTensor = None,
1141
+ attention_mask: Optional[torch.Tensor] = None,
1142
+ position_ids: Optional[torch.LongTensor] = None,
1143
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1144
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1145
+ labels: Optional[torch.LongTensor] = None,
1146
+ use_cache: Optional[bool] = None,
1147
+ output_attentions: Optional[bool] = None,
1148
+ output_hidden_states: Optional[bool] = None,
1149
+ return_dict: Optional[bool] = None,
1150
+ cache_position: Optional[torch.LongTensor] = None,
1151
+ num_logits_to_keep: int = 0,
1152
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1153
+ r"""
1154
+ Args:
1155
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1156
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1157
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1158
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1159
+
1160
+ num_logits_to_keep (`int`, *optional*):
1161
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
1162
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
1163
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
1164
+
1165
+ Returns:
1166
+
1167
+ Example:
1168
+
1169
+ ```python
1170
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
1171
+
1172
+ >>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
1173
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
1174
+
1175
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1176
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1177
+
1178
+ >>> # Generate
1179
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1180
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1181
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1182
+ ```"""
1183
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1184
+ output_hidden_states = (
1185
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1186
+ )
1187
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1188
+
1189
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1190
+ outputs = self.model(
1191
+ input_ids=input_ids,
1192
+ attention_mask=attention_mask,
1193
+ position_ids=position_ids,
1194
+ past_key_values=past_key_values,
1195
+ inputs_embeds=inputs_embeds,
1196
+ use_cache=use_cache,
1197
+ output_attentions=output_attentions,
1198
+ output_hidden_states=output_hidden_states,
1199
+ return_dict=return_dict,
1200
+ cache_position=cache_position,
1201
+ )
1202
+
1203
+ hidden_states = outputs[0]
1204
+ if self.config.pretraining_tp > 1:
1205
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1206
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1207
+ logits = torch.cat(logits, dim=-1)
1208
+ else:
1209
+ if labels is None and not is_torchdynamo_compiling():
1210
+ logger.warning_once(
1211
+ "Starting from v4.46, the `logits` model output will have the same type as the model (except at train time, where it will always be FP32)"
1212
+ )
1213
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
1214
+ # TODO: remove the float() operation in v4.46
1215
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]).float()
1216
+
1217
+ loss = None
1218
+ if labels is not None:
1219
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
1220
+ logits = logits.float()
1221
+ # Shift so that tokens < n predict n
1222
+ shift_logits = logits[..., :-1, :].contiguous()
1223
+ shift_labels = labels[..., 1:].contiguous()
1224
+ # Flatten the tokens
1225
+ loss_fct = CrossEntropyLoss()
1226
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1227
+ shift_labels = shift_labels.view(-1)
1228
+ # Enable model parallelism
1229
+ shift_labels = shift_labels.to(shift_logits.device)
1230
+ loss = loss_fct(shift_logits, shift_labels)
1231
+
1232
+ if not return_dict:
1233
+ output = (logits,) + outputs[1:]
1234
+ return (loss,) + output if loss is not None else output
1235
+
1236
+ return CausalLMOutputWithPast(
1237
+ loss=loss,
1238
+ logits=logits,
1239
+ past_key_values=outputs.past_key_values,
1240
+ hidden_states=outputs.hidden_states,
1241
+ attentions=outputs.attentions,
1242
+ )
1243
+
1244
+ def prepare_inputs_for_generation(
1245
+ self,
1246
+ input_ids,
1247
+ past_key_values=None,
1248
+ attention_mask=None,
1249
+ inputs_embeds=None,
1250
+ cache_position=None,
1251
+ position_ids=None,
1252
+ use_cache=True,
1253
+ num_logits_to_keep=0,
1254
+ **kwargs,
1255
+ ):
1256
+ # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
1257
+ # Exception 1: when passing input_embeds, input_ids may be missing entries
1258
+ # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
1259
+ if past_key_values is not None:
1260
+ if inputs_embeds is not None: # Exception 1
1261
+ input_ids = input_ids[:, -cache_position.shape[0] :]
1262
+ elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
1263
+ input_ids = input_ids[:, cache_position]
1264
+
1265
+ if attention_mask is not None and position_ids is None:
1266
+ # create position_ids on the fly for batch generation
1267
+ position_ids = attention_mask.long().cumsum(-1) - 1
1268
+ position_ids.masked_fill_(attention_mask == 0, 1)
1269
+ if past_key_values:
1270
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1271
+
1272
+ # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
1273
+ position_ids = position_ids.clone(memory_format=torch.contiguous_format)
1274
+
1275
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1276
+ if inputs_embeds is not None and cache_position[0] == 0:
1277
+ model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
1278
+ else:
1279
+ # The clone here is for the same reason as for `position_ids`.
1280
+ model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
1281
+
1282
+ if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
1283
+ if model_inputs["inputs_embeds"] is not None:
1284
+ batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
1285
+ device = model_inputs["inputs_embeds"].device
1286
+ else:
1287
+ batch_size, sequence_length = model_inputs["input_ids"].shape
1288
+ device = model_inputs["input_ids"].device
1289
+
1290
+ dtype = self.lm_head.weight.dtype
1291
+ min_dtype = torch.finfo(dtype).min
1292
+
1293
+ attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
1294
+ attention_mask,
1295
+ sequence_length=sequence_length,
1296
+ target_length=past_key_values.get_max_length(),
1297
+ dtype=dtype,
1298
+ device=device,
1299
+ min_dtype=min_dtype,
1300
+ cache_position=cache_position,
1301
+ batch_size=batch_size,
1302
+ )
1303
+
1304
+ model_inputs.update(
1305
+ {
1306
+ "position_ids": position_ids,
1307
+ "cache_position": cache_position,
1308
+ "past_key_values": past_key_values,
1309
+ "use_cache": use_cache,
1310
+ "attention_mask": attention_mask,
1311
+ "num_logits_to_keep": num_logits_to_keep,
1312
+ }
1313
+ )
1314
+ return model_inputs
1315
+
1316
+
1317
+ @add_start_docstrings(
1318
+ """
1319
+ The LLaMa Model transformer with a sequence classification head on top (linear layer).
1320
+
1321
+ [`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1322
+ (e.g. GPT-2) do.
1323
+
1324
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1325
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1326
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1327
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1328
+ each row of the batch).
1329
+ """,
1330
+ LLAMA_START_DOCSTRING,
1331
+ )
1332
+ class LlamaForSequenceClassification(LlamaPreTrainedModel):
1333
+ def __init__(self, config):
1334
+ super().__init__(config)
1335
+ self.num_labels = config.num_labels
1336
+ self.model = LlamaModel(config)
1337
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1338
+
1339
+ # Initialize weights and apply final processing
1340
+ self.post_init()
1341
+
1342
+ def get_input_embeddings(self):
1343
+ return self.model.embed_tokens
1344
+
1345
+ def set_input_embeddings(self, value):
1346
+ self.model.embed_tokens = value
1347
+
1348
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1349
+ def forward(
1350
+ self,
1351
+ input_ids: Optional[torch.LongTensor] = None,
1352
+ attention_mask: Optional[torch.Tensor] = None,
1353
+ position_ids: Optional[torch.LongTensor] = None,
1354
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1355
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1356
+ labels: Optional[torch.LongTensor] = None,
1357
+ use_cache: Optional[bool] = None,
1358
+ output_attentions: Optional[bool] = None,
1359
+ output_hidden_states: Optional[bool] = None,
1360
+ return_dict: Optional[bool] = None,
1361
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1362
+ r"""
1363
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1364
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1365
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1366
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1367
+ """
1368
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1369
+
1370
+ transformer_outputs = self.model(
1371
+ input_ids,
1372
+ attention_mask=attention_mask,
1373
+ position_ids=position_ids,
1374
+ past_key_values=past_key_values,
1375
+ inputs_embeds=inputs_embeds,
1376
+ use_cache=use_cache,
1377
+ output_attentions=output_attentions,
1378
+ output_hidden_states=output_hidden_states,
1379
+ return_dict=return_dict,
1380
+ )
1381
+ hidden_states = transformer_outputs[0]
1382
+ logits = self.score(hidden_states)
1383
+
1384
+ if input_ids is not None:
1385
+ batch_size = input_ids.shape[0]
1386
+ else:
1387
+ batch_size = inputs_embeds.shape[0]
1388
+
1389
+ if self.config.pad_token_id is None and batch_size != 1:
1390
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1391
+ if self.config.pad_token_id is None:
1392
+ sequence_lengths = -1
1393
+ else:
1394
+ if input_ids is not None:
1395
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1396
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1397
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1398
+ sequence_lengths = sequence_lengths.to(logits.device)
1399
+ else:
1400
+ sequence_lengths = -1
1401
+
1402
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1403
+
1404
+ loss = None
1405
+ if labels is not None:
1406
+ labels = labels.to(logits.device)
1407
+ if self.config.problem_type is None:
1408
+ if self.num_labels == 1:
1409
+ self.config.problem_type = "regression"
1410
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1411
+ self.config.problem_type = "single_label_classification"
1412
+ else:
1413
+ self.config.problem_type = "multi_label_classification"
1414
+
1415
+ if self.config.problem_type == "regression":
1416
+ loss_fct = MSELoss()
1417
+ if self.num_labels == 1:
1418
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1419
+ else:
1420
+ loss = loss_fct(pooled_logits, labels)
1421
+ elif self.config.problem_type == "single_label_classification":
1422
+ loss_fct = CrossEntropyLoss()
1423
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1424
+ elif self.config.problem_type == "multi_label_classification":
1425
+ loss_fct = BCEWithLogitsLoss()
1426
+ loss = loss_fct(pooled_logits, labels)
1427
+ if not return_dict:
1428
+ output = (pooled_logits,) + transformer_outputs[1:]
1429
+ return ((loss,) + output) if loss is not None else output
1430
+
1431
+ return SequenceClassifierOutputWithPast(
1432
+ loss=loss,
1433
+ logits=pooled_logits,
1434
+ past_key_values=transformer_outputs.past_key_values,
1435
+ hidden_states=transformer_outputs.hidden_states,
1436
+ attentions=transformer_outputs.attentions,
1437
+ )
1438
+
1439
+
1440
+ @add_start_docstrings(
1441
+ """
1442
+ The Llama Model transformer with a span classification head on top for extractive question-answering tasks like
1443
+ SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
1444
+ """,
1445
+ LLAMA_START_DOCSTRING,
1446
+ )
1447
+ class LlamaForQuestionAnswering(LlamaPreTrainedModel):
1448
+ base_model_prefix = "transformer"
1449
+
1450
+ # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->Llama
1451
+ def __init__(self, config):
1452
+ super().__init__(config)
1453
+ self.transformer = LlamaModel(config)
1454
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1455
+
1456
+ # Initialize weights and apply final processing
1457
+ self.post_init()
1458
+
1459
+ def get_input_embeddings(self):
1460
+ return self.transformer.embed_tokens
1461
+
1462
+ def set_input_embeddings(self, value):
1463
+ self.transformer.embed_tokens = value
1464
+
1465
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1466
+ def forward(
1467
+ self,
1468
+ input_ids: Optional[torch.LongTensor] = None,
1469
+ attention_mask: Optional[torch.FloatTensor] = None,
1470
+ position_ids: Optional[torch.LongTensor] = None,
1471
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1472
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1473
+ start_positions: Optional[torch.LongTensor] = None,
1474
+ end_positions: Optional[torch.LongTensor] = None,
1475
+ output_attentions: Optional[bool] = None,
1476
+ output_hidden_states: Optional[bool] = None,
1477
+ return_dict: Optional[bool] = None,
1478
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1479
+ r"""
1480
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1481
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1482
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1483
+ are not taken into account for computing the loss.
1484
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1485
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1486
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1487
+ are not taken into account for computing the loss.
1488
+ """
1489
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1490
+
1491
+ outputs = self.transformer(
1492
+ input_ids,
1493
+ attention_mask=attention_mask,
1494
+ position_ids=position_ids,
1495
+ past_key_values=past_key_values,
1496
+ inputs_embeds=inputs_embeds,
1497
+ output_attentions=output_attentions,
1498
+ output_hidden_states=output_hidden_states,
1499
+ return_dict=return_dict,
1500
+ )
1501
+
1502
+ sequence_output = outputs[0]
1503
+
1504
+ logits = self.qa_outputs(sequence_output)
1505
+ start_logits, end_logits = logits.split(1, dim=-1)
1506
+ start_logits = start_logits.squeeze(-1).contiguous()
1507
+ end_logits = end_logits.squeeze(-1).contiguous()
1508
+
1509
+ total_loss = None
1510
+ if start_positions is not None and end_positions is not None:
1511
+ # If we are on multi-GPU, split add a dimension
1512
+ if len(start_positions.size()) > 1:
1513
+ start_positions = start_positions.squeeze(-1).to(start_logits.device)
1514
+ if len(end_positions.size()) > 1:
1515
+ end_positions = end_positions.squeeze(-1).to(end_logits.device)
1516
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1517
+ ignored_index = start_logits.size(1)
1518
+ start_positions = start_positions.clamp(0, ignored_index)
1519
+ end_positions = end_positions.clamp(0, ignored_index)
1520
+
1521
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1522
+ start_loss = loss_fct(start_logits, start_positions)
1523
+ end_loss = loss_fct(end_logits, end_positions)
1524
+ total_loss = (start_loss + end_loss) / 2
1525
+
1526
+ if not return_dict:
1527
+ output = (start_logits, end_logits) + outputs[2:]
1528
+ return ((total_loss,) + output) if total_loss is not None else output
1529
+
1530
+ return QuestionAnsweringModelOutput(
1531
+ loss=total_loss,
1532
+ start_logits=start_logits,
1533
+ end_logits=end_logits,
1534
+ hidden_states=outputs.hidden_states,
1535
+ attentions=outputs.attentions,
1536
+ )
1537
+
1538
+
1539
+ @add_start_docstrings(
1540
+ """
1541
+ The Llama Model transformer with a token classification head on top (a linear layer on top of the hidden-states
1542
+ output) e.g. for Named-Entity-Recognition (NER) tasks.
1543
+ """,
1544
+ LLAMA_START_DOCSTRING,
1545
+ )
1546
+ class LlamaForTokenClassification(LlamaPreTrainedModel):
1547
+ def __init__(self, config):
1548
+ super().__init__(config)
1549
+ self.num_labels = config.num_labels
1550
+ self.model = LlamaModel(config)
1551
+ if getattr(config, "classifier_dropout", None) is not None:
1552
+ classifier_dropout = config.classifier_dropout
1553
+ elif getattr(config, "hidden_dropout", None) is not None:
1554
+ classifier_dropout = config.hidden_dropout
1555
+ else:
1556
+ classifier_dropout = 0.1
1557
+ self.dropout = nn.Dropout(classifier_dropout)
1558
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
1559
+
1560
+ # Initialize weights and apply final processing
1561
+ self.post_init()
1562
+
1563
+ def get_input_embeddings(self):
1564
+ return self.model.embed_tokens
1565
+
1566
+ def set_input_embeddings(self, value):
1567
+ self.model.embed_tokens = value
1568
+
1569
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1570
+ def forward(
1571
+ self,
1572
+ input_ids: Optional[torch.LongTensor] = None,
1573
+ attention_mask: Optional[torch.Tensor] = None,
1574
+ position_ids: Optional[torch.LongTensor] = None,
1575
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1576
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1577
+ labels: Optional[torch.LongTensor] = None,
1578
+ use_cache: Optional[bool] = None,
1579
+ output_attentions: Optional[bool] = None,
1580
+ output_hidden_states: Optional[bool] = None,
1581
+ return_dict: Optional[bool] = None,
1582
+ ) -> Union[Tuple, TokenClassifierOutput]:
1583
+ r"""
1584
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1585
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1586
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1587
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1588
+ """
1589
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1590
+
1591
+ outputs = self.model(
1592
+ input_ids,
1593
+ attention_mask=attention_mask,
1594
+ position_ids=position_ids,
1595
+ past_key_values=past_key_values,
1596
+ inputs_embeds=inputs_embeds,
1597
+ use_cache=use_cache,
1598
+ output_attentions=output_attentions,
1599
+ output_hidden_states=output_hidden_states,
1600
+ return_dict=return_dict,
1601
+ )
1602
+ sequence_output = outputs[0]
1603
+ sequence_output = self.dropout(sequence_output)
1604
+ logits = self.score(sequence_output)
1605
+
1606
+ loss = None
1607
+ if labels is not None:
1608
+ loss_fct = CrossEntropyLoss()
1609
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1610
+
1611
+ if not return_dict:
1612
+ output = (logits,) + outputs[2:]
1613
+ return ((loss,) + output) if loss is not None else output
1614
+
1615
+ return TokenClassifierOutput(
1616
+ loss=loss,
1617
+ logits=logits,
1618
+ hidden_states=outputs.hidden_states,
1619
+ attentions=outputs.attentions,
1620
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|im_end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|finetune_right_pad_id|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,2063 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|im_start|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|im_end|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|im_end|>",
2056
+ "model_input_names": [
2057
+ "input_ids",
2058
+ "attention_mask"
2059
+ ],
2060
+ "model_max_length": 131072,
2061
+ "pad_token": "<|finetune_right_pad_id|>",
2062
+ "tokenizer_class": "PreTrainedTokenizerFast"
2063
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1325c3b7f556e94daa743645d0dd90725bc4daec194f5d71574856771e46d2f1
3
+ size 7992