--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - emodb metrics: - accuracy model-index: - name: whisper-large-v3-de-emodb-emotion-classification results: - task: name: Audio Classification type: audio-classification dataset: name: Emo-DB type: emodb metrics: - name: Accuracy type: accuracy value: 0.9439252336448598 --- # whisper-large-v3-de-emodb-emotion-classification This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Emo-DB dataset. It achieves the following results on the evaluation set: - Loss: 0.3724 - Accuracy: 0.9439 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3351 | 1.0 | 214 | 1.1022 | 0.4953 | | 0.2644 | 2.0 | 428 | 0.7572 | 0.7477 | | 0.3796 | 3.0 | 642 | 1.0055 | 0.8131 | | 0.0038 | 4.0 | 856 | 1.0754 | 0.8131 | | 0.001 | 5.0 | 1070 | 0.5485 | 0.9159 | | 0.001 | 6.0 | 1284 | 0.5881 | 0.8785 | | 0.0007 | 7.0 | 1498 | 0.3376 | 0.9439 | | 0.0006 | 8.0 | 1712 | 0.3592 | 0.9439 | | 0.0006 | 9.0 | 1926 | 0.3695 | 0.9439 | | 0.0004 | 10.0 | 2140 | 0.3724 | 0.9439 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1