File size: 1,541 Bytes
9671331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import functools
import seqio
from t5.evaluation import metrics
from t5.data import preprocessors

vocabulary = seqio.SentencePieceVocabulary('spiece.model')
output_features = {
    'inputs': seqio.Feature(vocabulary=vocabulary, add_eos=True, required=False),
    'targets': seqio.Feature(vocabulary=vocabulary, add_eos=True)
}

seqio.TaskRegistry.add(
    'pretrain_finnish',
    source=seqio.TextLineDataSource({
        "train": "/researchdisk/lm_training_dataset_full_sentences/train.txt",
        "validation": "/researchdisk/lm_training_dataset_full_sentences/validation.txt"
        }),
    preprocessors=[
        functools.partial(
            preprocessors.parse_tsv,
            field_names=["text"],
            field_delim="\n"),
        functools.partial(
            preprocessors.rekey, key_map={
                "inputs": None,
                "targets": "text"
            }),
        seqio.preprocessors.tokenize,
        seqio.CacheDatasetPlaceholder(),
        preprocessors.span_corruption,
        seqio.preprocessors.append_eos_after_trim,
    ],
    metric_fns=[metrics.accuracy],
    output_features=output_features)

# dataset = seqio.get_mixture_or_task("pretrain_finnish").get_dataset(
#     sequence_length={"inputs": 512, "targets": 114},
#     split="train",
#     shuffle=True,
#     num_epochs=1,
#     #shard_info=seqio.ShardInfo(index=0, num_shards=10),
#     use_cached=False,
#     seed=42
# )


# # Print the first 5 examples.
# for _, ex in zip(range(5), dataset.as_numpy_iterator()):
#     print(ex)