rajistics commited on
Commit
0151a55
1 Parent(s): ab0bdf5

Added model info

Browse files
Files changed (1) hide show
  1. README.md +83 -3
README.md CHANGED
@@ -1,13 +1,93 @@
1
  ---
2
- tags: autotrain
3
- language: unk
 
 
4
  widget:
5
- - text: "I love AutoTrain 🤗"
6
  datasets:
7
  - rajistics/autotrain-data-auditor-sentiment
 
8
  co2_eq_emissions: 3.165771608457648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  # Model Trained Using AutoTrain
12
 
13
  - Problem type: Multi-class Classification
 
1
  ---
2
+ language: en
3
+ tags:
4
+ - autotrain
5
+ - DEV
6
  widget:
7
+ - text: "Operating profit jumped to EUR 47 million from EUR 6.6 million"
8
  datasets:
9
  - rajistics/autotrain-data-auditor-sentiment
10
+ - FinanceInc/auditor_sentiment
11
  co2_eq_emissions: 3.165771608457648
12
+ model-index:
13
+ - name: auditor_sentiment_finetuned
14
+ results:
15
+ - task:
16
+ type: text-classification
17
+ name: Text Classification
18
+ dataset:
19
+ name: FinanceInc/auditor_sentiment
20
+ type: glue
21
+ split: validation
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.862
26
+ verified: true
27
+ - name: F1
28
+ type: f1
29
+ value: 0.845
30
+ verified: true
31
+ - name: Recall
32
+ type: recall
33
+ value: 0.846
34
+ verified: true
35
+ - name: Precision
36
+ type: precision
37
+ value: 0.844
38
+ verified: true
39
+ - task:
40
+ type: text-classification
41
+ name: Text Classification
42
+ dataset:
43
+ name: FinanceInc/auditor_sentiment_2021
44
+ type: glue
45
+ split: validation
46
+ metrics:
47
+ - name: Accuracy
48
+ type: accuracy
49
+ value: 0.848937
50
+ verified: true
51
+ - name: F1
52
+ type: f1
53
+ value: 0.848282
54
+ verified: true
55
+ - name: Recall
56
+ type: recall
57
+ value: 0.808937
58
+ verified: true
59
+ - name: Precision
60
+ type: precision
61
+ value: 0.818542
62
+ verified: true
63
  ---
64
 
65
+ # Auditor Review Sentiment Model
66
+
67
+ This model has been finetuned from the proprietary version of [FinBERT](https://huggingface.co/demo-org/finbert-pretrain) trained internally using demo.org proprietary dataset of auditor evaluation of sentiment.
68
+
69
+ FinBErt is a BERT model pre-trained on a large corpora of financial texts. The purpose is to enhance financial NLP research and practice in the financial domain, hoping that financial practitioners and researchers can benefit from this model without the necessity of the significant computational resources required to train the model.
70
+
71
+ # Training Data
72
+
73
+ This model was fine-tuned using [Autotrain](https://ui.autotrain.huggingface.co/9802/trainings) from the demo-org/auditor_review review dataset.
74
+
75
+ # Model Status
76
+ This model is currently being evaluated in development until the end of the quarter. Based on the results, it may be elevated to production.
77
+
78
+
79
+ ### Training hyperparameters
80
+ The following hyperparameters were used during training:
81
+ - learning_rate: 0.0002
82
+ - train_batch_size: 16
83
+ - eval_batch_size: 8
84
+ - seed: 42
85
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
86
+ - lr_scheduler_type: linear
87
+ - num_epochs: 4
88
+ - mixed_precision_training: Native AMP
89
+
90
+
91
  # Model Trained Using AutoTrain
92
 
93
  - Problem type: Multi-class Classification