File size: 2,335 Bytes
e51d432
 
 
7e4d4c9
 
 
 
 
 
 
 
 
 
 
 
e51d432
7e4d4c9
e51d432
7e4d4c9
 
e51d432
 
7e4d4c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
base_model: Qwen/Qwen2.5-32B-Instruct
library_name: peft
license: mit
language:
- en
- ko
- zh
- pt
- ja
- uz
- tl
- th
- vi
- id
---
# FINGU-AI/Qwen2.5-32B-Lora-HQ-e-635

## Overview
`FINGU-AI/Qwen2.5-32B-Lora-HQ-e-635` is a powerful causal language model designed for a variety of natural language processing (NLP) tasks, including machine translation, text generation, and chat-based applications. This model is particularly useful for translating between Korean and Uzbek, as well as supporting other custom NLP tasks through flexible input.

## Model Details
- **Model ID**: `FINGU-AI/Qwen2.5-32B-Lora-HQ-e-635`
- **Architecture**: Causal Language Model (LM)
- **Parameters**: 32 billion
- **Precision**: Torch BF16 for efficient GPU memory usage
- **Attention**: SDPA (Scaled Dot-Product Attention)
- **Primary Use Case**: Translation (e.g., Korean to Uzbek), text generation, and dialogue systems.

## Example Usage

### Installation
Make sure to install the required packages:

```bash
pip install torch transformers
```
### Loading the Model

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# Model and Tokenizer
model_id = 'FINGU-AI/Qwen2.5-32B-Lora-HQ-e-635'
model = AutoModelForCausalLM.from_pretrained(model_id, attn_implementation="sdpa", torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model.to('cuda')

# Input Messages for Translation
messages = [
    {"role": "system", "content": "translate korean to Uzbek"},
    {"role": "user", "content": """์ƒˆ๋กœ์šด ์€ํ–‰ ๊ณ„์ขŒ๋ฅผ ๊ฐœ์„คํ•˜๋Š” ์ ˆ์ฐจ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:

1. ๊ณ„์ขŒ ๊ฐœ์„ค ๋ชฉ์ ๊ณผ ์‹ ๋ถ„ ํ™•์ธ์„ ์œ„ํ•œ ์„œ๋ฅ˜ ์ œ์ถœ
2. ์„œ๋ฅ˜ ๊ฒ€ํ†  ๊ณผ์ •์„ ๊ฑฐ์น˜๋Š” ๊ฒƒ
3. ๊ณ ๊ฐ๋‹˜์˜ ์‹ ์› ํ™•์ธ ์ ˆ์ฐจ๋ฅผ ์ง„ํ–‰ํ•˜๋Š” ๊ฒƒ
4. ๋ชจ๋“  ์ ˆ์ฐจ๊ฐ€ ์™„๋ฃŒ๋˜๋ฉด ๊ณ„์ขŒ ๊ฐœ์„ค์ด ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.

๊ณ„์ขŒ ๊ฐœ์„ค์„ ์›ํ•˜์‹œ๋Š” ๊ฒฝ์šฐ, ์‹ ๋ถ„์ฆ๊ณผ ํ•จ๊ป˜ ๋ฐฉ๋ฌธํ•ด ์ฃผ์‹œ๋ฉด ๋ฉ๋‹ˆ๋‹ค.
    """},
]

# Tokenize and Generate Response
input_ids = tokenizer.apply_chat_template(
    messages,
    add_generation_prompt=True,
    return_tensors="pt"
).to('cuda')

outputs = model.generate(
    input_ids,
    max_new_tokens=500,
    do_sample=True,
)

# Decode and Print the Translation
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
```