File size: 3,166 Bytes
52e8991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19e357a
 
52e8991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19e357a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52e8991
 
 
 
19e357a
52e8991
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-base-timit-demo-google-colab-Ezra_William
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-timit-demo-google-colab-Ezra_William

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5198
- Wer: 0.3335

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.4828        | 1.0   | 500   | 1.6354          | 1.0429 |
| 0.8406        | 2.01  | 1000  | 0.5389          | 0.5405 |
| 0.4345        | 3.01  | 1500  | 0.4202          | 0.4438 |
| 0.2912        | 4.02  | 2000  | 0.4195          | 0.4216 |
| 0.2316        | 5.02  | 2500  | 0.4253          | 0.4051 |
| 0.1917        | 6.02  | 3000  | 0.3969          | 0.3958 |
| 0.1545        | 7.03  | 3500  | 0.4291          | 0.3912 |
| 0.1423        | 8.03  | 4000  | 0.4349          | 0.3731 |
| 0.1234        | 9.04  | 4500  | 0.4419          | 0.3784 |
| 0.1124        | 10.04 | 5000  | 0.4713          | 0.3741 |
| 0.0991        | 11.04 | 5500  | 0.4711          | 0.3692 |
| 0.0924        | 12.05 | 6000  | 0.4994          | 0.3699 |
| 0.0809        | 13.05 | 6500  | 0.4888          | 0.3643 |
| 0.0715        | 14.06 | 7000  | 0.4828          | 0.3634 |
| 0.0646        | 15.06 | 7500  | 0.5058          | 0.3570 |
| 0.0604        | 16.06 | 8000  | 0.5586          | 0.3637 |
| 0.0571        | 17.07 | 8500  | 0.4991          | 0.3553 |
| 0.0532        | 18.07 | 9000  | 0.5317          | 0.3566 |
| 0.0471        | 19.08 | 9500  | 0.5308          | 0.3508 |
| 0.0449        | 20.08 | 10000 | 0.5362          | 0.3486 |
| 0.0373        | 21.08 | 10500 | 0.5211          | 0.3479 |
| 0.0351        | 22.09 | 11000 | 0.5132          | 0.3445 |
| 0.0333        | 23.09 | 11500 | 0.4927          | 0.3381 |
| 0.0302        | 24.1  | 12000 | 0.5330          | 0.3413 |
| 0.0282        | 25.1  | 12500 | 0.5295          | 0.3396 |
| 0.024         | 26.1  | 13000 | 0.5022          | 0.3356 |
| 0.0262        | 27.11 | 13500 | 0.5320          | 0.3329 |
| 0.0242        | 28.11 | 14000 | 0.5133          | 0.3326 |
| 0.0201        | 29.12 | 14500 | 0.5198          | 0.3335 |


### Framework versions

- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 1.18.3
- Tokenizers 0.13.3