File size: 2,140 Bytes
15ed8d5
 
 
 
 
5626e82
15ed8d5
 
 
 
 
 
 
 
 
 
 
 
 
5626e82
15ed8d5
5626e82
 
15ed8d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
543e9f9
15ed8d5
 
 
543e9f9
15ed8d5
 
 
6dd0894
15ed8d5
 
 
 
543e9f9
 
6dd0894
 
 
 
 
 
 
 
 
 
15ed8d5
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- audio-classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wav2vec2-base-wakeword
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-wakeword

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1988
- Accuracy: 0.8980

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.5835        | 0.9832 | 44   | 0.4825          | 0.8305   |
| 0.3198        | 1.9888 | 89   | 0.3220          | 0.8681   |
| 0.2074        | 2.9944 | 134  | 0.2879          | 0.8571   |
| 0.164         | 4.0    | 179  | 0.2867          | 0.8454   |
| 0.1524        | 4.9832 | 223  | 0.2757          | 0.8414   |
| 0.1529        | 5.9888 | 268  | 0.3233          | 0.8273   |
| 0.1256        | 6.9944 | 313  | 0.2192          | 0.8666   |
| 0.1169        | 8.0    | 358  | 0.1988          | 0.8980   |
| 0.1128        | 8.9832 | 402  | 0.2188          | 0.8713   |
| 0.1252        | 9.8324 | 440  | 0.2259          | 0.8689   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1