File size: 2,115 Bytes
15ed8d5 6dd0894 15ed8d5 6dd0894 15ed8d5 543e9f9 15ed8d5 543e9f9 15ed8d5 6dd0894 15ed8d5 543e9f9 6dd0894 15ed8d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wav2vec2-base-wakeword
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-wakeword
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2259
- Accuracy: 0.8689
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.5835 | 0.9832 | 44 | 0.4825 | 0.8305 |
| 0.3198 | 1.9888 | 89 | 0.3220 | 0.8681 |
| 0.2074 | 2.9944 | 134 | 0.2879 | 0.8571 |
| 0.164 | 4.0 | 179 | 0.2867 | 0.8454 |
| 0.1524 | 4.9832 | 223 | 0.2757 | 0.8414 |
| 0.1529 | 5.9888 | 268 | 0.3233 | 0.8273 |
| 0.1256 | 6.9944 | 313 | 0.2192 | 0.8666 |
| 0.1169 | 8.0 | 358 | 0.1988 | 0.8980 |
| 0.1128 | 8.9832 | 402 | 0.2188 | 0.8713 |
| 0.1252 | 9.8324 | 440 | 0.2259 | 0.8689 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|