--- license: apache-2.0 language: - hi tags: - text-generation-inference - transformers - unsloth - gemma - trl base_model: unsloth/gemma-7b-bnb-4bit pipeline_tag: text-generation --- # Uploaded model - **Developed by:** Ellight - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-7b-bnb-4bit This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) # Hindi-Gemma-2B-instruct (Instruction-tuned) Hindi-Gemma-2B-instruct is an instruction-tuned Hindi large language model (LLM) with 2 billion parameters, and it is based on Gemma 2B. # TO do inference using the LORA adapters from unsloth import FastLanguageModel model, tokenizer = FastLanguageModel.from_pretrained( model_name = "Ellight/gemma-2b-bnb-4bit", # YOUR MODEL YOU USED FOR TRAINING max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, ) FastLanguageModel.for_inference(model) # Enable native 2x faster inference alpaca_prompt = """ ### Instruction: {} ### Response: {}""" inputs = tokenizer( [ alpaca_prompt.format( "शतरंज बोर्ड पर कितने वर्ग होते हैं?", # instruction "", # output - leave this blank for generation! ) ], return_tensors = "pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True) tokenizer.batch_decode(outputs)