File size: 2,015 Bytes
5dc3945
 
 
 
 
 
 
 
 
 
 
 
1c7ef5b
1b41f3b
 
 
 
307d693
 
 
 
256f480
4c9713b
256f480
dfc7b3a
 
 
 
 
 
 
 
 
 
 
 
 
 
4c5caae
 
 
 
dfc7b3a
 
 
256f480
 
 
5dc3945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
base_model:
- Undi95/MXLewd-L2-20B
- Undi95/PsyMedRP-v1-20B
library_name: transformers
tags:
- mergekit
- merge

---
# merge

PsyMedLewd. A merge of two of my favourite models for scifi stories: 

-  [Undi95/MXLewd-L2-20B](https://huggingface.co/Undi95/MXLewd-L2-20B)

-  [Undi95/PsyMedRP-v1-20B](https://huggingface.co/Undi95/PsyMedRP-v1-20B)

Currently testing more merge iterations of these two models.



![Warning: Cute alien girls inside!](https://huggingface.co/Elfrino/PsyMedLewd/raw/main/redgirl2.jpg)

RECOMMENDED SETTINGS FOR ALL PsyMedLewd VERSIONS

(based on KoboldCPP):

Temperature - 1.3

Max Ctx. Tokens - 4096

Top p Sampling - 0.99

Repetition Penalty - 1.09

Amount to Gen. - 512


Prompt template: Alpaca or ChatML


First iteration. More to come..

#########################################################################################################



This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

## Merge Details
### Merge Method

This model was merged using the SLERP merge method.

### Models Merged

The following models were included in the merge:
* [Undi95/MXLewd-L2-20B](https://huggingface.co/Undi95/MXLewd-L2-20B)
* [Undi95/PsyMedRP-v1-20B](https://huggingface.co/Undi95/PsyMedRP-v1-20B)

### Configuration

The following YAML configuration was used to produce this model:

```yaml
slices:
  - sources:
      - model: Undi95/PsyMedRP-v1-20B
        layer_range: [0, 62]  # PsyMedRP has 62 layers
      - model: Undi95/MXLewd-L2-20B
        layer_range: [0, 62]  # MXLewd has 62 layers
merge_method: slerp  # Or use another method like weight_average if needed
base_model: Undi95/MXLewd-L2-20B  # Can use either as the base model
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]  # Tune these for desired effect
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5  # Default averaging weight
dtype: bfloat16  # Use preferred dtype, like fp16 or float32 if needed
```