File size: 2,015 Bytes
5dc3945 1c7ef5b 1b41f3b 307d693 256f480 4c9713b 256f480 dfc7b3a 4c5caae dfc7b3a 256f480 5dc3945 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
base_model:
- Undi95/MXLewd-L2-20B
- Undi95/PsyMedRP-v1-20B
library_name: transformers
tags:
- mergekit
- merge
---
# merge
PsyMedLewd. A merge of two of my favourite models for scifi stories:
- [Undi95/MXLewd-L2-20B](https://huggingface.co/Undi95/MXLewd-L2-20B)
- [Undi95/PsyMedRP-v1-20B](https://huggingface.co/Undi95/PsyMedRP-v1-20B)
Currently testing more merge iterations of these two models.
![Warning: Cute alien girls inside!](https://huggingface.co/Elfrino/PsyMedLewd/raw/main/redgirl2.jpg)
RECOMMENDED SETTINGS FOR ALL PsyMedLewd VERSIONS
(based on KoboldCPP):
Temperature - 1.3
Max Ctx. Tokens - 4096
Top p Sampling - 0.99
Repetition Penalty - 1.09
Amount to Gen. - 512
Prompt template: Alpaca or ChatML
First iteration. More to come..
#########################################################################################################
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
### Models Merged
The following models were included in the merge:
* [Undi95/MXLewd-L2-20B](https://huggingface.co/Undi95/MXLewd-L2-20B)
* [Undi95/PsyMedRP-v1-20B](https://huggingface.co/Undi95/PsyMedRP-v1-20B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: Undi95/PsyMedRP-v1-20B
layer_range: [0, 62] # PsyMedRP has 62 layers
- model: Undi95/MXLewd-L2-20B
layer_range: [0, 62] # MXLewd has 62 layers
merge_method: slerp # Or use another method like weight_average if needed
base_model: Undi95/MXLewd-L2-20B # Can use either as the base model
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1] # Tune these for desired effect
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5 # Default averaging weight
dtype: bfloat16 # Use preferred dtype, like fp16 or float32 if needed
```
|