--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.86 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5690 - Accuracy: 0.86 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5369 | 1.0 | 56 | 1.4184 | 0.69 | | 1.1716 | 1.99 | 112 | 1.0323 | 0.75 | | 0.9106 | 2.99 | 168 | 0.8989 | 0.8 | | 0.9016 | 4.0 | 225 | 0.7206 | 0.82 | | 0.6024 | 5.0 | 281 | 0.7432 | 0.81 | | 0.5155 | 5.99 | 337 | 0.6442 | 0.83 | | 0.3924 | 6.99 | 393 | 0.5743 | 0.85 | | 0.3956 | 7.96 | 448 | 0.5690 | 0.86 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3