EAV123 commited on
Commit
a20b244
1 Parent(s): f183eeb

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -9
README.md CHANGED
@@ -5,9 +5,24 @@ tags:
5
  - generated_from_trainer
6
  datasets:
7
  - marsyas/gtzan
 
 
8
  model-index:
9
  - name: distilhubert-finetuned-gtzan
10
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -17,13 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
19
  It achieves the following results on the evaluation set:
20
- - eval_loss: 1.8797
21
- - eval_accuracy: 0.53
22
- - eval_runtime: 82.589
23
- - eval_samples_per_second: 1.211
24
- - eval_steps_per_second: 0.303
25
- - epoch: 1.0
26
- - step: 56
27
 
28
  ## Model description
29
 
@@ -51,7 +61,21 @@ The following hyperparameters were used during training:
51
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
  - lr_scheduler_type: linear
53
  - lr_scheduler_warmup_ratio: 0.1
54
- - num_epochs: 3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
  ### Framework versions
57
 
 
5
  - generated_from_trainer
6
  datasets:
7
  - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
  model-index:
11
  - name: distilhubert-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.86
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.5690
36
+ - Accuracy: 0.86
 
 
 
 
 
37
 
38
  ## Model description
39
 
 
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
63
  - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 8
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 1.5369 | 1.0 | 56 | 1.4184 | 0.69 |
71
+ | 1.1716 | 1.99 | 112 | 1.0323 | 0.75 |
72
+ | 0.9106 | 2.99 | 168 | 0.8989 | 0.8 |
73
+ | 0.9016 | 4.0 | 225 | 0.7206 | 0.82 |
74
+ | 0.6024 | 5.0 | 281 | 0.7432 | 0.81 |
75
+ | 0.5155 | 5.99 | 337 | 0.6442 | 0.83 |
76
+ | 0.3924 | 6.99 | 393 | 0.5743 | 0.85 |
77
+ | 0.3956 | 7.96 | 448 | 0.5690 | 0.86 |
78
+
79
 
80
  ### Framework versions
81