--- language: - vot license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - vot - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-vot-final-a2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: vot metrics: - name: Test WER type: wer value: 0.8333333333333334 - name: Test CER type: cer value: 0.48672566371681414 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: vot metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- # wav2vec2-large-xls-r-300m-vot-final-a2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - VOT dataset. It achieves the following results on the evaluation set: - Loss: 2.8745 - Wer: 0.8333 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-vot-final-a2 --dataset mozilla-foundation/common_voice_8_0 --config vot --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Votic language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 340 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 11.1216 | 33.33 | 100 | 4.2848 | 1.0 | | 2.9982 | 66.67 | 200 | 2.8665 | 1.0 | | 1.5476 | 100.0 | 300 | 2.3022 | 0.8889 | | 0.2776 | 133.33 | 400 | 2.7480 | 0.8889 | | 0.1136 | 166.67 | 500 | 2.5383 | 0.8889 | | 0.0489 | 200.0 | 600 | 2.8745 | 0.8333 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0