--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan-bs-8 results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.84 --- # distilhubert-finetuned-gtzan-bs-8 This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6841 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0984 | 1.0 | 113 | 1.9609 | 0.47 | | 1.4296 | 2.0 | 226 | 1.3195 | 0.67 | | 1.09 | 3.0 | 339 | 0.9894 | 0.72 | | 0.9233 | 4.0 | 452 | 0.8749 | 0.75 | | 0.6404 | 5.0 | 565 | 0.7553 | 0.78 | | 0.3805 | 6.0 | 678 | 0.7402 | 0.77 | | 0.4079 | 7.0 | 791 | 0.5268 | 0.84 | | 0.1812 | 8.0 | 904 | 0.5418 | 0.85 | | 0.1942 | 9.0 | 1017 | 0.4633 | 0.86 | | 0.033 | 10.0 | 1130 | 0.6342 | 0.84 | | 0.0155 | 11.0 | 1243 | 0.6264 | 0.84 | | 0.1256 | 12.0 | 1356 | 0.6804 | 0.85 | | 0.0095 | 13.0 | 1469 | 0.6653 | 0.83 | | 0.0084 | 14.0 | 1582 | 0.6737 | 0.84 | | 0.0088 | 15.0 | 1695 | 0.6841 | 0.84 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3