--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan-bs-4 results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.86 --- # distilhubert-finetuned-gtzan-bs-4 This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6851 - Accuracy: 0.86 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8665 | 1.0 | 225 | 1.7962 | 0.45 | | 1.1445 | 2.0 | 450 | 1.1084 | 0.68 | | 0.9474 | 3.0 | 675 | 0.8338 | 0.73 | | 0.8286 | 4.0 | 900 | 0.7530 | 0.76 | | 0.2336 | 5.0 | 1125 | 0.5369 | 0.84 | | 0.2092 | 6.0 | 1350 | 0.5608 | 0.86 | | 0.2092 | 7.0 | 1575 | 0.5390 | 0.88 | | 0.04 | 8.0 | 1800 | 0.5567 | 0.88 | | 0.0046 | 9.0 | 2025 | 0.5736 | 0.86 | | 0.0029 | 10.0 | 2250 | 0.6236 | 0.86 | | 0.0035 | 11.0 | 2475 | 0.8139 | 0.85 | | 0.0018 | 12.0 | 2700 | 0.5752 | 0.9 | | 0.0016 | 13.0 | 2925 | 0.6745 | 0.85 | | 0.0016 | 14.0 | 3150 | 0.6959 | 0.85 | | 0.0014 | 15.0 | 3375 | 0.6851 | 0.86 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3