File size: 8,339 Bytes
1168ec9 eb138fd 1168ec9 eb138fd 1168ec9 f78e229 dce5212 1168ec9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
---
license: other
base_model: "terminusresearch/FluxBooru-v0.3"
tags:
- flux
- flux-diffusers
- text-to-image
- diffusers
- simpletuner
- not-for-all-audiences
- lora
- template:sd-lora
- lycoris
inference: true
widget:
- text: 'unconditional (blank prompt)'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_0_0.png
- text: 'a photo of a q1s woman in a suit standing on the streets of Tokyo'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_1_0.png
- text: 'a anime of a q1s woman in school uniform standing on a bridge'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_2_0.png
- text: 'a photo of a q1s woman in leather jacket on the beach'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_3_0.png
- text: 'A stunning portrait of a q1s woman adorned with a luxurious wide-brimmed red hat that elegantly covers part of her face, illustration, vibrant, sophisticated, portrait photography'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_4_0.png
- text: 'A grainy, sepia-toned photograph taken with a Kodak Portra 400 film camera in the late 1990s of a q1s woman with captivating gaze poses confidently. She wears a vintage, black MinMin T-shirt, slightly oversized and slightly worn, with the band''s iconic logo prominently displayed. The background is blurred, suggesting a dimly lit, underground music venue or a friend''s basement.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_5_0.png
- text: 'A captivating minimalist masterpiece illustration of a q1s woman exuding elegance and tranquility. The beautiful subject is dressed in a linen dress, featuring pastel beige and light grey hues. The background consists of a harmonious composition of rectangles and squares, subtly outlined in black pencil. This vibrant and conceptual artwork elicits a cinematic and fashionable illustration.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_6_0.png
- text: 'a digital painting of a q1s woman in a green hoodie and purple skirt standing in front of an office building'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_7_0.png
- text: 'A whimsical miniature 3D alcohol ink portrait of a q1s woman mermaid nestled in a giant seashell. She has a shimmering fish tail adorned with intricate scales in various shades of blue and turquoise. She wears a top made of tiny seashells and pearls. Surrounding her are small, bioluminescent jellyfish, adding a magical glow to the scene. The lighting creates a dreamy, underwater atmosphere that captures the essence of oceanic wonder and enchantment.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_8_0.png
- text: 'a photo of a q1s woman as a historical marble statue in a grand bathroom'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_9_0.png
- text: 'A captivating watercolor portrayal of a q1s woman. Her eyes are the focal point. The vibrant color palette features bright red, deep green, and pastel beige and white, creating a striking contrast. The fluid, free-flowing brushstrokes imbue the artwork with movement and emotion. The background is an abstract tapestry of color, with splashes of the same hues, adding depth and dimension to the portrait. Painting, illustration.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_10_0.png
- text: 'an oil painting of q1s in a hoordie and skirt walking on the beach'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_11_0.png
---
# flux-test-q1sV22
This is a LyCORIS adapter derived from [terminusresearch/FluxBooru-v0.3](https://huggingface.co/terminusresearch/FluxBooru-v0.3).
The main validation prompt used during training was:
```
an oil painting of q1s in a hoordie and skirt walking on the beach
```
## Validation settings
- CFG: `3.5`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `None`
- Seed: `42`
- Resolution: `1024x1024`
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
You can find some example images in the following gallery:
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 6
- Training steps: 3250
- Learning rate: 0.001
- Max grad norm: 1.0
- Effective batch size: 3
- Micro-batch size: 1
- Gradient accumulation steps: 3
- Number of GPUs: 1
- Prediction type: flow-matching (extra parameters=['shift=1.0', 'flux_guidance_value=3.5', 'flux_attention_masked_training'])
- Optimizer: adamw_bf16weight_decay=1e-3
- Trainable parameter precision: Pure BF16
- Quantised base model: Yes (int8-quanto)
- Xformers: Not used
- LyCORIS Config:
```json
{
"algo": "lokr",
"multiplier": 1.0,
"linear_dim": 10000,
"linear_alpha": 1,
"factor": 12,
"apply_preset": {
"target_module": [
"Attention",
"FeedForward"
],
"module_algo_map": {
"Attention": {
"factor": 12
},
"FeedForward": {
"factor": 6
}
}
}
}
```
## Datasets
### q1sV22-1024-crop
- Repeats: 30
- Total number of images: 15
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
### q1sV22-512-crop
- Repeats: 30
- Total number of images: 19
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
### gen-and-inpaint-q1s-1024-reg
- Repeats: 0
- Total number of images: 530
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: Yes
## Inference
```python
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
def download_adapter(repo_id: str):
import os
from huggingface_hub import hf_hub_download
adapter_filename = "pytorch_lora_weights.safetensors"
cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
os.makedirs(path_to_adapter, exist_ok=True)
hf_hub_download(
repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
)
return path_to_adapter_file
model_id = 'terminusresearch/FluxBooru-v0.3'
adapter_repo_id = 'DragonQuix/flux-test-q1sV22'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
wrapper.merge_to()
prompt = "an oil painting of q1s in a hoordie and skirt walking on the beach"
## Optional: quantise the model to save on vram.
## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1024,
height=1024,
guidance_scale=3.5,
).images[0]
image.save("output.png", format="PNG")
```
|