Upload tokenization_moss.py with huggingface_hub
Browse files- tokenization_moss.py +380 -0
tokenization_moss.py
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tokenization classes for Moss"""
|
2 |
+
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import numpy as np
|
6 |
+
import regex as re
|
7 |
+
|
8 |
+
from functools import lru_cache
|
9 |
+
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
|
10 |
+
|
11 |
+
from transformers.utils import is_tf_available, is_torch_available, logging
|
12 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
13 |
+
|
14 |
+
|
15 |
+
if TYPE_CHECKING:
|
16 |
+
if is_torch_available():
|
17 |
+
import torch
|
18 |
+
if is_tf_available():
|
19 |
+
import tensorflow as tf
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
VOCAB_FILES_NAMES = {
|
25 |
+
"vocab_file": "vocab.json",
|
26 |
+
"merges_file": "merges.txt",
|
27 |
+
}
|
28 |
+
|
29 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
30 |
+
"vocab_file": {
|
31 |
+
"fnlp/moss-moon-003-base": "https://huggingface.co/fnlp/moss-moon-003-base/resolve/main/vocab.json",
|
32 |
+
"fnlp/moss-moon-003-sft": "https://huggingface.co/fnlp/moss-moon-003-sft/resolve/main/vocab.json",
|
33 |
+
"fnlp/moss-moon-003-sft-plugin": "https://huggingface.co/fnlp/moss-moon-003-sft-plugin/resolve/main/vocab.json",
|
34 |
+
"fnlp/moss-moon-003-sft-int8": "https://huggingface.co/fnlp/moss-moon-003-sft-int8/resolve/main/vocab.json",
|
35 |
+
"fnlp/moss-moon-003-sft-plugin-int8": "https://huggingface.co/fnlp/moss-moon-003-sft-plugin-int8/resolve/main/vocab.json",
|
36 |
+
"fnlp/moss-moon-003-sft-int4": "https://huggingface.co/fnlp/moss-moon-003-sft-int4/resolve/main/vocab.json",
|
37 |
+
"fnlp/moss-moon-003-sft-plugin-int4": "https://huggingface.co/fnlp/moss-moon-003-sft-plugin-int4/resolve/main/vocab.json",
|
38 |
+
},
|
39 |
+
"merges_file": {
|
40 |
+
"fnlp/moss-moon-003-base": "https://huggingface.co/fnlp/moss-moon-003-base/resolve/main/merges.txt",
|
41 |
+
"fnlp/moss-moon-003-sft": "https://huggingface.co/fnlp/moss-moon-003-sft/resolve/main/merges.txt",
|
42 |
+
"fnlp/moss-moon-003-sft-plugin": "https://huggingface.co/fnlp/moss-moon-003-sft-plugin/resolve/main/merges.txt",
|
43 |
+
"fnlp/moss-moon-003-sft-int8": "https://huggingface.co/fnlp/moss-moon-003-sft-int8/resolve/main/merges.txt",
|
44 |
+
"fnlp/moss-moon-003-sft-plugin-int8": "https://huggingface.co/fnlp/moss-moon-003-sft-plugin-int8/resolve/main/merges.txt",
|
45 |
+
"fnlp/moss-moon-003-sft-int4": "https://huggingface.co/fnlp/moss-moon-003-sft-int4/resolve/main/merges.txt",
|
46 |
+
"fnlp/moss-moon-003-sft-plugin-int4": "https://huggingface.co/fnlp/moss-moon-003-sft-plugin-int4/resolve/main/merges.txt",
|
47 |
+
},
|
48 |
+
}
|
49 |
+
|
50 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
51 |
+
"fnlp/moss-moon-003-base": 2048,
|
52 |
+
"fnlp/moss-moon-003-sft": 2048,
|
53 |
+
"fnlp/moss-moon-003-sft-plugin": 2048,
|
54 |
+
"fnlp/moss-moon-003-sft-int8": 2048,
|
55 |
+
"fnlp/moss-moon-003-sft-plugin-int8": 2048,
|
56 |
+
"fnlp/moss-moon-003-sft-int4": 2048,
|
57 |
+
"fnlp/moss-moon-003-sft-plugin-int4": 2048,
|
58 |
+
}
|
59 |
+
|
60 |
+
|
61 |
+
@lru_cache()
|
62 |
+
def bytes_to_unicode():
|
63 |
+
"""
|
64 |
+
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
|
65 |
+
characters the bpe code barfs on.
|
66 |
+
|
67 |
+
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
|
68 |
+
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
|
69 |
+
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
|
70 |
+
tables between utf-8 bytes and unicode strings.
|
71 |
+
"""
|
72 |
+
bs = (
|
73 |
+
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
74 |
+
)
|
75 |
+
cs = bs[:]
|
76 |
+
n = 0
|
77 |
+
for b in range(2**8):
|
78 |
+
if b not in bs:
|
79 |
+
bs.append(b)
|
80 |
+
cs.append(2**8 + n)
|
81 |
+
n += 1
|
82 |
+
cs = [chr(n) for n in cs]
|
83 |
+
return dict(zip(bs, cs))
|
84 |
+
|
85 |
+
|
86 |
+
def get_pairs(word):
|
87 |
+
"""
|
88 |
+
Return set of symbol pairs in a word.
|
89 |
+
|
90 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
91 |
+
"""
|
92 |
+
pairs = set()
|
93 |
+
prev_char = word[0]
|
94 |
+
for char in word[1:]:
|
95 |
+
pairs.add((prev_char, char))
|
96 |
+
prev_char = char
|
97 |
+
return pairs
|
98 |
+
|
99 |
+
|
100 |
+
class MossTokenizer(PreTrainedTokenizer):
|
101 |
+
"""
|
102 |
+
Construct a Moss tokenizer. Based on byte-level Byte-Pair-Encoding.
|
103 |
+
|
104 |
+
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
|
105 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
106 |
+
|
107 |
+
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
|
108 |
+
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
|
109 |
+
|
110 |
+
<Tip>
|
111 |
+
|
112 |
+
When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).
|
113 |
+
|
114 |
+
</Tip>
|
115 |
+
|
116 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
117 |
+
this superclass for more information regarding those methods.
|
118 |
+
|
119 |
+
Args:
|
120 |
+
vocab_file (`str`):
|
121 |
+
Path to the vocabulary file.
|
122 |
+
merges_file (`str`):
|
123 |
+
Path to the merges file.
|
124 |
+
errors (`str`, *optional*, defaults to `"replace"`):
|
125 |
+
Paradigm to follow when decoding bytes to UTF-8. See
|
126 |
+
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
127 |
+
unk_token (`str`, *optional*, defaults to `<|endoftext|>`):
|
128 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
129 |
+
token instead.
|
130 |
+
bos_token (`str`, *optional*, defaults to `<|endoftext|>`):
|
131 |
+
The beginning of sequence token.
|
132 |
+
eos_token (`str`, *optional*, defaults to `<|endoftext|>`):
|
133 |
+
The end of sequence token.
|
134 |
+
add_prefix_space (`bool`, *optional*, defaults to `False`):
|
135 |
+
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
136 |
+
other word. (Moss tokenizer detect beginning of words by the preceding space).
|
137 |
+
"""
|
138 |
+
|
139 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
140 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
141 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
142 |
+
model_input_names = ["input_ids", "attention_mask"]
|
143 |
+
|
144 |
+
def __init__(
|
145 |
+
self,
|
146 |
+
vocab_file,
|
147 |
+
merges_file,
|
148 |
+
errors="replace",
|
149 |
+
unk_token="<|endoftext|>",
|
150 |
+
bos_token="<|endoftext|>",
|
151 |
+
eos_token="<eom>",
|
152 |
+
pad_token=None,
|
153 |
+
add_prefix_space=False,
|
154 |
+
add_bos_token=False,
|
155 |
+
**kwargs,
|
156 |
+
):
|
157 |
+
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
158 |
+
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
159 |
+
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
|
160 |
+
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
161 |
+
super().__init__(
|
162 |
+
errors=errors,
|
163 |
+
unk_token=unk_token,
|
164 |
+
bos_token=bos_token,
|
165 |
+
eos_token=eos_token,
|
166 |
+
pad_token=pad_token,
|
167 |
+
add_prefix_space=add_prefix_space,
|
168 |
+
add_bos_token=add_bos_token,
|
169 |
+
**kwargs,
|
170 |
+
)
|
171 |
+
self.add_bos_token = add_bos_token
|
172 |
+
|
173 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
174 |
+
self.encoder = json.load(vocab_handle)
|
175 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
176 |
+
self.errors = errors # how to handle errors in decoding
|
177 |
+
self.byte_encoder = bytes_to_unicode()
|
178 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
179 |
+
with open(merges_file, encoding="utf-8") as merges_handle:
|
180 |
+
bpe_merges = merges_handle.read().split("\n")[1:-1]
|
181 |
+
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
|
182 |
+
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
183 |
+
self.cache = {}
|
184 |
+
self.add_prefix_space = add_prefix_space
|
185 |
+
|
186 |
+
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
|
187 |
+
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
|
188 |
+
|
189 |
+
@property
|
190 |
+
def vocab_size(self):
|
191 |
+
return len(self.encoder)
|
192 |
+
|
193 |
+
def get_vocab(self):
|
194 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
195 |
+
|
196 |
+
def bpe(self, token):
|
197 |
+
if token in self.cache:
|
198 |
+
return self.cache[token]
|
199 |
+
word = tuple(token)
|
200 |
+
pairs = get_pairs(word)
|
201 |
+
|
202 |
+
if not pairs:
|
203 |
+
return token
|
204 |
+
|
205 |
+
while True:
|
206 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
207 |
+
if bigram not in self.bpe_ranks:
|
208 |
+
break
|
209 |
+
first, second = bigram
|
210 |
+
new_word = []
|
211 |
+
i = 0
|
212 |
+
while i < len(word):
|
213 |
+
try:
|
214 |
+
j = word.index(first, i)
|
215 |
+
except ValueError:
|
216 |
+
new_word.extend(word[i:])
|
217 |
+
break
|
218 |
+
else:
|
219 |
+
new_word.extend(word[i:j])
|
220 |
+
i = j
|
221 |
+
|
222 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
223 |
+
new_word.append(first + second)
|
224 |
+
i += 2
|
225 |
+
else:
|
226 |
+
new_word.append(word[i])
|
227 |
+
i += 1
|
228 |
+
new_word = tuple(new_word)
|
229 |
+
word = new_word
|
230 |
+
if len(word) == 1:
|
231 |
+
break
|
232 |
+
else:
|
233 |
+
pairs = get_pairs(word)
|
234 |
+
word = " ".join(word)
|
235 |
+
self.cache[token] = word
|
236 |
+
return word
|
237 |
+
|
238 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
239 |
+
if self.add_bos_token:
|
240 |
+
bos_token_ids = [self.bos_token_id]
|
241 |
+
else:
|
242 |
+
bos_token_ids = []
|
243 |
+
|
244 |
+
output = bos_token_ids + token_ids_0
|
245 |
+
|
246 |
+
if token_ids_1 is None:
|
247 |
+
return output
|
248 |
+
|
249 |
+
return output + bos_token_ids + token_ids_1
|
250 |
+
|
251 |
+
def _tokenize(self, text):
|
252 |
+
"""Tokenize a string."""
|
253 |
+
bpe_tokens = []
|
254 |
+
for token in re.findall(self.pat, text):
|
255 |
+
token = "".join(
|
256 |
+
self.byte_encoder[b] for b in token.encode("utf-8")
|
257 |
+
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
|
258 |
+
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
|
259 |
+
return bpe_tokens
|
260 |
+
|
261 |
+
def _convert_token_to_id(self, token):
|
262 |
+
"""Converts a token (str) in an id using the vocab."""
|
263 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
264 |
+
|
265 |
+
def _convert_id_to_token(self, index):
|
266 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
267 |
+
return self.decoder.get(index)
|
268 |
+
|
269 |
+
def convert_tokens_to_string(self, tokens):
|
270 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
271 |
+
text = "".join(tokens)
|
272 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
|
273 |
+
return text
|
274 |
+
|
275 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
276 |
+
if not os.path.isdir(save_directory):
|
277 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
278 |
+
return
|
279 |
+
vocab_file = os.path.join(
|
280 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
281 |
+
)
|
282 |
+
merge_file = os.path.join(
|
283 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
284 |
+
)
|
285 |
+
|
286 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
287 |
+
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
288 |
+
|
289 |
+
index = 0
|
290 |
+
with open(merge_file, "w", encoding="utf-8") as writer:
|
291 |
+
writer.write("#version: 0.2\n")
|
292 |
+
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
293 |
+
if index != token_index:
|
294 |
+
logger.warning(
|
295 |
+
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
296 |
+
" Please check that the tokenizer is not corrupted!"
|
297 |
+
)
|
298 |
+
index = token_index
|
299 |
+
writer.write(" ".join(bpe_tokens) + "\n")
|
300 |
+
index += 1
|
301 |
+
|
302 |
+
return vocab_file, merge_file
|
303 |
+
|
304 |
+
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
|
305 |
+
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
|
306 |
+
if is_split_into_words or add_prefix_space:
|
307 |
+
text = " " + text
|
308 |
+
return (text, kwargs)
|
309 |
+
|
310 |
+
def decode(
|
311 |
+
self,
|
312 |
+
token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"],
|
313 |
+
skip_special_tokens: bool = False,
|
314 |
+
clean_up_tokenization_spaces: bool = None,
|
315 |
+
truncate_before_pattern: Optional[List[str]] = None,
|
316 |
+
**kwargs,
|
317 |
+
) -> str:
|
318 |
+
"""
|
319 |
+
Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
|
320 |
+
tokens and clean up tokenization spaces.
|
321 |
+
|
322 |
+
Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`.
|
323 |
+
|
324 |
+
Args:
|
325 |
+
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
|
326 |
+
List of tokenized input ids. Can be obtained using the `__call__` method.
|
327 |
+
skip_special_tokens (`bool`, *optional*, defaults to `False`):
|
328 |
+
Whether or not to remove special tokens in the decoding.
|
329 |
+
clean_up_tokenization_spaces (`bool`, *optional*):
|
330 |
+
Whether or not to clean up the tokenization spaces. If `None`, will default to
|
331 |
+
`self.clean_up_tokenization_spaces` (available in the `tokenizer_config`).
|
332 |
+
truncate_before_pattern (`List[str]`, *optional*, defaults to `None`):
|
333 |
+
A list of regular expression strings that will be used to truncate the returned string. This can be
|
334 |
+
used to remove extra pieces of code (e.g. truncate if observing a comment symbol "#" at the beginning
|
335 |
+
of a new line). An example pattern could be `["^#", re.escape("<|endoftext|>"), "^'''", "\n\n\n"]`.
|
336 |
+
kwargs (additional keyword arguments, *optional*):
|
337 |
+
Will be passed to the underlying model specific decode method.
|
338 |
+
|
339 |
+
Returns:
|
340 |
+
`str`: The decoded sentence.
|
341 |
+
"""
|
342 |
+
decoded_text = super()._decode(
|
343 |
+
token_ids=token_ids,
|
344 |
+
skip_special_tokens=skip_special_tokens,
|
345 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
346 |
+
**kwargs,
|
347 |
+
)
|
348 |
+
|
349 |
+
if truncate_before_pattern is not None and len(truncate_before_pattern) > 0:
|
350 |
+
decoded_text = self.truncate(decoded_text, truncate_before_pattern)
|
351 |
+
|
352 |
+
return decoded_text
|
353 |
+
|
354 |
+
def truncate(self, completion, truncate_before_pattern):
|
355 |
+
def find_re(string, pattern, start_pos):
|
356 |
+
m = pattern.search(string, start_pos)
|
357 |
+
return m.start() if m else -1
|
358 |
+
|
359 |
+
terminals = [re.compile(pattern, re.MULTILINE) for pattern in truncate_before_pattern]
|
360 |
+
|
361 |
+
prints = list(re.finditer("^print", completion, re.MULTILINE))
|
362 |
+
|
363 |
+
if len(prints) > 1:
|
364 |
+
completion = completion[: prints[1].start()]
|
365 |
+
|
366 |
+
defs = list(re.finditer("^def", completion, re.MULTILINE))
|
367 |
+
|
368 |
+
if len(defs) > 1:
|
369 |
+
completion = completion[: defs[1].start()]
|
370 |
+
|
371 |
+
start_pos = 0
|
372 |
+
|
373 |
+
terminals_pos = [
|
374 |
+
pos for pos in [find_re(completion, terminal, start_pos) for terminal in terminals] if pos != -1
|
375 |
+
]
|
376 |
+
|
377 |
+
if len(terminals_pos) > 0:
|
378 |
+
return completion[: min(terminals_pos)]
|
379 |
+
else:
|
380 |
+
return completion
|