File size: 2,277 Bytes
f8d6381 89f8e4f f8d6381 89f8e4f f8d6381 89f8e4f f8d6381 89f8e4f f8d6381 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: mit
base_model: indobenchmark/indobert-base-p2
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: story_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# story_model
This model is a fine-tuned version of [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2923
- Accuracy: 0.9409
- F1: 0.9043
- Precision: 0.9087
- Recall: 0.9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log | 0.53 | 50 | 0.5324 | 0.8978 | 0.8032 | 0.9009 | 0.7572 |
| No log | 1.06 | 100 | 0.2795 | 0.9355 | 0.8967 | 0.8967 | 0.8967 |
| No log | 1.6 | 150 | 0.2561 | 0.9194 | 0.8772 | 0.8608 | 0.8972 |
| No log | 2.13 | 200 | 0.3274 | 0.9194 | 0.8635 | 0.8871 | 0.8444 |
| No log | 2.66 | 250 | 0.2756 | 0.9247 | 0.8819 | 0.8745 | 0.89 |
| No log | 3.19 | 300 | 0.4554 | 0.9032 | 0.8302 | 0.8696 | 0.8028 |
| No log | 3.72 | 350 | 0.2333 | 0.9462 | 0.9157 | 0.9075 | 0.9244 |
| No log | 4.26 | 400 | 0.4101 | 0.9247 | 0.8711 | 0.9013 | 0.8478 |
| No log | 4.79 | 450 | 0.2826 | 0.9409 | 0.9063 | 0.9021 | 0.9106 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
|