--- license: mit base_model: indobenchmark/indobert-base-p2 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: absa_model results: [] --- # absa_model This model is a fine-tuned version of [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6475 - Accuracy: 0.8392 - F1: 0.8409 - Precision: 0.8444 - Recall: 0.8431 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 72 | 0.6475 | 0.8392 | 0.8409 | 0.8444 | 0.8431 | | No log | 2.0 | 144 | 0.8639 | 0.8252 | 0.8156 | 0.8261 | 0.8177 | | No log | 3.0 | 216 | 0.9170 | 0.7832 | 0.7800 | 0.8112 | 0.7676 | | No log | 4.0 | 288 | 0.8206 | 0.8322 | 0.8359 | 0.8346 | 0.8405 | | No log | 5.0 | 360 | 0.8318 | 0.8392 | 0.8417 | 0.8434 | 0.8404 | | No log | 6.0 | 432 | 0.9578 | 0.8252 | 0.8255 | 0.8243 | 0.8325 | | 0.0684 | 7.0 | 504 | 0.9713 | 0.8112 | 0.8027 | 0.8143 | 0.7967 | | 0.0684 | 8.0 | 576 | 0.9850 | 0.8252 | 0.8137 | 0.8236 | 0.8089 | | 0.0684 | 9.0 | 648 | 0.9955 | 0.8392 | 0.8258 | 0.8347 | 0.8203 | | 0.0684 | 10.0 | 720 | 0.9964 | 0.8392 | 0.8258 | 0.8347 | 0.8203 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0