--- language: - en license: apache-2.0 base_model: openai/whisper-tiny.en tags: - generated_from_trainer datasets: - Dev372/Medical_STT_Dataset_1.1 metrics: - wer model-index: - name: English Whisper Model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Medical type: Dev372/Medical_STT_Dataset_1.1 args: 'split: test' metrics: - name: Wer type: wer value: 6.580881152225743 --- # English Whisper Model This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the Medical dataset. It achieves the following results on the evaluation set: - Loss: 0.1386 - Wer: 6.5809 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 36 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.1731 | 0.5650 | 100 | 0.9844 | 10.2812 | | 0.6483 | 1.1299 | 200 | 0.6288 | 9.3047 | | 0.3802 | 1.6949 | 300 | 0.3554 | 7.8938 | | 0.1437 | 2.2599 | 400 | 0.1702 | 7.1230 | | 0.1136 | 2.8249 | 500 | 0.1415 | 6.5841 | | 0.0752 | 3.3898 | 600 | 0.1336 | 6.0616 | | 0.0713 | 3.9548 | 700 | 0.1257 | 6.1236 | | 0.0373 | 4.5198 | 800 | 0.1279 | 5.8526 | | 0.0311 | 5.0847 | 900 | 0.1283 | 5.8003 | | 0.03 | 5.6497 | 1000 | 0.1303 | 6.1171 | | 0.0166 | 6.2147 | 1100 | 0.1314 | 6.0845 | | 0.0241 | 6.7797 | 1200 | 0.1339 | 6.3588 | | 0.0164 | 7.3446 | 1300 | 0.1368 | 6.3555 | | 0.0178 | 7.9096 | 1400 | 0.1380 | 6.4764 | | 0.0099 | 8.4746 | 1500 | 0.1386 | 6.5809 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1