LLM ITA
Collection
Open-Source Language Models Finetuned for Italian
β’
4 items
β’
Updated
β’
5
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MODEL_NAME = "DeepMount00/Llama-3.1-8b-Ita"
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16).eval()
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
def generate_answer(prompt):
messages = [
{"role": "user", "content": prompt},
]
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=200, do_sample=True,
temperature=0.001)
decoded = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
return decoded[0]
prompt = "Come si apre un file json in python?"
answer = generate_answer(prompt)
print(answer)
[Michele Montebovi]
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 28.23 |
IFEval (0-Shot) | 79.17 |
BBH (3-Shot) | 30.93 |
MATH Lvl 5 (4-Shot) | 10.88 |
GPQA (0-shot) | 5.03 |
MuSR (0-shot) | 11.40 |
MMLU-PRO (5-shot) | 31.96 |