File size: 1,093 Bytes
1334969
 
377570c
af8232c
 
c7f5685
1334969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f74be0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
license: apache-2.0
pipeline_tag: token-classification
language:
- it
library_name: gliner
---

## Installation
To use this model, you must install the GLiNER Python library:
```
!pip install gliner
```

## Usage
Once you've downloaded the GLiNER library, you can import the GLiNER class. You can then load this model using `GLiNER.from_pretrained` and predict entities with `predict_entities`.

```python
from gliner import GLiNER

model = GLiNER.from_pretrained("DeepMount00/GLiNER_ITA_LARGE")

text = """..."""

labels = ["label1", "label2"]

entities = model.predict_entities(text, labels)

for entity in entities:
    print(entity["text"], "=>", entity["label"])
```

## Model Author
* [Michele Montebovi](https://huggingface.co/DeepMount00)

## Citation
```bibtex
@misc{zaratiana2023gliner,
      title={GLiNER: Generalist Model for Named Entity Recognition using Bidirectional Transformer}, 
      author={Urchade Zaratiana and Nadi Tomeh and Pierre Holat and Thierry Charnois},
      year={2023},
      eprint={2311.08526},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}